
PROBLEMS FOR BOI 2000

1



BOI 2000

STICKERS (LATVIA)

Charles is auto races fan and he decided to make his own model’s collection. In shop it
is possible to buy models in closed and covered boxes. In each box there are one model
parts and set of stickers with images of digits. In every box the set of stickers is the same.
Charles decided to label models by consecutive integers starting from 1. For example, to
label the 2070-th model four stickers are necessary: one sticker with ”2”, two with ”0” and
one with ”7”.

Charles complete every model in the following way: he opens new box, builds a model
and labels it using sticker(s). He can use stickers from current and previously opened
boxes, but it is not allowed to open additional new box to get at missing stickers.

Write a program which for given set of stickers counts how much models Charles can label
in the described way.

Input data: In the only line of text file STICKERS.IN ten one digit integers

i0, i1, i2, i3, i4, i5, i6, i7, i8, i9

are given, where ij is a number of stickers with digit j, (0 � j � 9) in the sticker set of
every box. Each two neighbour digits are separated by one space symbol.

Output data: The only line of text file STICKERS.OUT should contain one integer –
number of labeled models.

Examples: Input data (file STICKERS.IN )

1 1 1 1 1 1 1 1 1 1

Output data (file STICKERS.OUT)

199990

Input data (file STICKERS.IN )

3 4 5 4 3 4 5 4 3 4

Output data (file STICKERS.OUT)

49999999499999999949999999973

August 2000 2 KTH Haninge, Sweden



BOI 2000

HONEYCOMB PROBLEM (FINLAND)

Figure 1 shows a honeycomb of numbers (side length of the honeycomb is 3). A route
starts from some node in the uppermost row and ends to some node in the lowest row.
From a node, the route can continue only diagonally down to the left or diagonally down
to the right. When creating a route through the honeycomb, you are allowed to make
at most one swap of two numbers on at most one horizontal row of the honeycomb.
(Swapping essentially means that in one chosen row you are allowed to place the greatest
number of that row to any position on the same row.) Your task is to write a program
that calculates the highest sum of numbers on any route using the ability of swapping two
numbers on a chosen row.

FIGUR 1. A honeycomb of side length 3.

Restrictions:

� The numbers in the nodes are integers between 0 and 99.
� The side length of the honeycomb is an integer between 1 and 99.

Input data: The side length of the honeycomb is in the first row of the file INPUT.TXT .
If the side length is n, the honeycomb consists of 2n − 1 rows. Numbers on the rows of
the honeycomb are on the following 2n − 1 rows as follows:

3
1 2 3
3 2 2 1
4 2 8 0 3
5 3 1 2
3 1 4

Output data: The highest sum is written as an integer in the file OUTPUT.TXT. In the
example of Figure 1:

22

In the Figure 1 the correct solution (3 + 2 + 8 + 5 + 4 = 22) is gray shaded. Notice that
number ’5’ on the 4 th row (from the top) is swapped to the 3 rd position (from the left)
on that row.

August 2000 3 KTH Haninge, Sweden



BOI 2000

ELECTRONICAL PLATE (LITHUANIA)

A square grid is carved on the top of a square plate. The place where two gridlines cross
is called a node. There are n� n nodes in the grid.

FIGUR 2. The problem (center) and the solution (right)

Some nodes contain pins. The task is to connect those pins to the nodes on the boundary
of the plate using electronic circuits. A circuit can be laid out only on the grid (e.g. it can’t
be laid out slantwise). Any two circuits can’t have a common point, therefore any two
circuits can’t be laid out on the same gridline, nor on the same node. A circuit can’t be laid
out on the boundary grid (the circuit must be finished as soon as it reaches boundary) nor
on a node, containing another pin.

An example of an electronic plate containing pins is given in figure 2, center. Black dots
in the picture represent pins.

Problem. Write a program to connect as many pins as possible to the nodes on the bounda-
ry. The pins which are already on the boundary satisfy the requirements and there is no
need to make any circuits for them.

If there exists more that one solution find any of them.

Input data: Input data are given in the text file ELEKT.IN . The first line of this file
contains an integer n(3 � n � 15).

Each of the following n lines consists of n digits separated by one space. The digits can be
1 or 0. One (1) means a pin, zero (0) - a node without a pin in the appropriate place of
the grid.

The nodes are numbered from 1 to n � n first from left to right and then from the top to
bottom. The number of the node the pin is on is the identifier of the pin.

Output data: Output the results to the text file ELEKT.OUT. Write k - the maximum
number of pins connected to the boundary using electronic circuits - in the first line of the
file. A circuit connecting an appropriate pin to the boundary should be described in each
of the following k lines. First comes the identifier of the pin, then the sequence of letters,
describing the directions of the circuit: E - to the East, W - to the West, N - to the North, S

- to the South. One space should be left between the identifier and the sequence of letters,
and no spaces should be left between the letters in the sequence.

August 2000 4 KTH Haninge, Sweden



BOI 2000

The results should be presented in the increasing order of pin identifiers.

Examples:

INPUT DATA OUTPUT DATA
6 6
0 0 0 1 1 1 11 E
0 0 0 0 1 0 16 NWN
0 0 0 1 1 1 17 SE
0 0 0 0 0 0 27 S
0 0 1 1 1 1 28 NWWSS
0 0 0 1 0 1 29 S

August 2000 5 KTH Haninge, Sweden



BOI 2000

MUTEXES (ESTONIA)

Modern programming languages allow writing programs that consist of several threads of
execution. This is as if several programs are running in parallel in the same address space,
accessing the same variables. Often the threads need to be synchronized with each other.
For instance, one thread may need to wait for another to complete some computation and
store the result into some variable.

The simplest tool for thread synchronization is mutex. A mutex is a special object that can
be in locked or unlocked state. A locked mutex is always owned by exactly one thread.
There are two operations that a thread can apply to a mutex: LOCK and UNLOCK.

If a thread applies LOCK to a mutex that is currently unlocked, the mutex becomes locked
and the thread acquires ownership of the mutex. If a thread tries to apply LOCK to a
mutex that is already locked by some other thread, the thread is blocked until the mutex
is unlocked.

If a thread applies UNLOCK to a mutex owned by the thread, the mutex becomes unlocked.
If there were other threads waiting to LOCK the mutex, one of them is granted ownership
of the mutex. If there were several threads waiting, one is selected arbitrarily.

There are two common kinds of problems in multithreaded programs: deadlocks and race
conditions. A deadlock occurs when two or more threads are waiting for each other to
release a mutex and none of them can continue. A deadlock occurs also when a thread
is waiting for a mutex that was locked by another thread that has terminated without
releasing the mutex.

A race condition occurs when two or more threads are accessing the same variable si-
multaneously. If one thread is writing a variable while another is reading it, the reading
thread may receive an arbitrary value: the result does not even have to be either the old
or the new value of the variable. If two or more threads are writing the same variable
simultaneously, the result is also undefined: the variable may receive an arbitrary value.
However, any number of threads can read a variable simultaneously without creating a
race condition.

Task: You are provided descriptions of some threads and your task is to decide whether
deadlocks and race conditions can occur.

Each of the threads is a sequence of instructions of the following form:

LOCK <mutex>
UNLOCK <mutex>
<variable>=<integer>
<variable>=<variable>
<variable>=<variable>+<variable>
<variable>=<variable>-<variable>

You may assume the following about the commands:

� names of mutexes are uppercase letters A . . . Z

� names of variables are lowercase letters a . . . z;
� all integers are in range 0 . . . 255

� no thread attempts to lock a mutex it already owns

August 2000 6 KTH Haninge, Sweden



BOI 2000

� no thread attempts to unlock a mutex it does not own

Input data: The first line of input file MUTEXES.IN contains the number of threads
M, (1 � M � 5) and is followed by M blocks describing each thread. The first line of a
block describing thread i contains the number of instructions in this thread Ni, (1 � Ni �

30) and is followed by Ni lines with instructions. Instructions do not contain extraneous
whitespace. Each thread contains at most 10 instructions operating on mutexes, the rest
are assignments.

Output data: The first line of output file MUTEXES.OUTmust contain two numbers: D

and R. D must be 1 if deadlocks are possible, or 0 if not. Similarly, R must be 1 if race
conditions are possible, or 0 if not.

If deadlocks are possible, the second line must describe a state of program in which a
deadlock occurs. If there are several states with a deadlock, output any of them. In this
case we are looking for complete deadlock, in which none of the threads can continue
execution – a thread must be either terminated or blocked by a mutex. If deadlocks are
not possible, the line must be empty.

The third line must contain description of a program state with a race condition if race
condition can occur, or be empty if race condition is not possible. If there are several race
conditions, output any of them.

State of program is described by specifying the zero-based index of current instruction for
each thread in the order in which the threads are presented in input file. For a terminated
thread, output −1 as the index. The indexes must be on a single line and separated by
spaces.

Sample:

MUTEXES.IN MUTEXES.OUT
2 0 1
5
a=5 1 3
b=a
LOCK X
c=a+b
UNLOCK X
4
LOCK X
c=2
UNLOCK X
b=3

August 2000 7 KTH Haninge, Sweden



BOI 2000

DIVISION EXPRESSION (POLAND)

Division expression is an arithmetic expression of the form

x1/x2/x2/.../xk

where xi is a positive integer, for i, (1 � i � k) Division expression is evaluated from the
left to the right. For instance the value of the expression

1/2/1/2

is 1/4. One can put parentheses into expression in order to change its value. For example
the value of the expression

(1/2)/(1/2)

is 1.

We are given a division expression E. Is it possible to put some parentheses into E to get
an expression E 0 whose value is an integer number.

Task: Write a program that for each data set from a sequence of several data sets:

� reads an expression E from the text file DIV.IN
� verifies whether it is possible to put some parentheses in E to get a new expression E 0

whose value is an integer number,
� writes the result to the text file DIV.OUT

Input data: The first line of the file DIV.IN contains one positive integer d, (d � 5)
not larger than 5. This is the number of data sets. The data sets follow. The first line of
each data set contain an integer n, (2 � n � 10000). This is the number of integers in the
expression. Each of the following n lines contains exactly one positive integer not greater
than 1 000 000 000. The i th number is the i th integer in the expression.

Output data: For each i, (1 � i � d) your program should write to the i th line of the
output file DIV.OUT one word YES, if the i th input expression can be transformed into
an expression whose value is an integer number, and the word NOin the other case.

Example:

For the input file DIV.IN :

2
4
1
2
1
2
3
1
2
3

the correct result is the output file:

YES
NO

August 2000 8 KTH Haninge, Sweden



BOI 2000

TIME ZONES (SWEDEN)

You’re a businessman that has customers all over the world. During one day you get
exactly one message from each time zone. The messages come with a time. Unfortunately
due to a millennium bug their local time is given without anything that identifies their time
zone.

Task: Your task is to identify from which time zones the messages originated.

In this task the number of hours in one day varies between 5 . . . 60. The number of ti-
me zones is always the same as the number of hours and each time zone has a time
displacement which is an integral number of hours.

You are receiving the calls in ”GMT”, that is in time zone 0 without any time displacement.
Your are also receiving one call from your own time zone.

The time zones are counted westward. That is, to get the time in your time zone you
should add an integral number of hours to the local time in the other time zone. Note
that this is not the common way to count the zones, normally zone 2 would be known as
”-2:00”.

For example, if the local time in time zone 2 is 03:15 it is 05:15 in your zone (”GMT”).

No two messages arrive at the same minute. And all between 0:00-(n − 1):59 (in the case
of a n-hour day). The date line goes between zone 0 and the last zone and can thus be
ignored.

Input data: The first row contains the number of time zones, n, 5 � n � 60, which also
is the number of hours in one day and the number of messages you received.

Each of the following n rows contains a time given as hhmm(2 digits hours and 2 digits
minutes where 0 � hours � n − 1 and 0 � minutes � 59). The rows are ordered in
chronological order, i.e. the first call that arrived is on the first row.

There is one unique solution in all given test examples.

Output data: One row containing n numbers from 0 to n − 1 identifying in which time
zones the n calls originated. The first number corresponds to the first time given in the
input etc.

Example: ZONES.IN :

5
0017
0250
0400
0201
0002

ZONES.OUT:

3 1 0 2 4

Note that call 3 must come from time-zone 0 or it would have arrived at a time later than
4:59 which is the last minute in the 5-hour days in this example.

August 2000 9 KTH Haninge, Sweden


