
page 1 of 2

CentralEuropeanOlympiad inInformatics

28 July – 4 August 2005 Sárospatak, Hungary
http://ceoi.inf.elte.hu

Multi-key Sorting

This is actually not a difficult task. The main difficulty is in understanding the problem and "seeing" an algorithm. Programming
it is quite easy.
A shortest equivalent sequence can be constructed as follows:

For each column indexi, retain only the rightmost instance ofi
For example,Sort(1);Sort(2);Sort(1) is equivalent toSort(2);Sort(1).
To prove this we need to show that the resulting sequence is indeed equivalent to the original sequence and that no shorter
sequence is equivalent.
The second part is easy: there is no shorter equivalent sequence. The original sequence involves sort operations on, say,K of
the columns. The proposed algorithm constructs a sequence ofK sort operations. Any shorter sequence will "miss" at least
one of the columns. Consider a table consisting of two rows that originally are out of order in the missed column, and that are
constant in all other columns. The shorter sequence yields the same table, but the original sequence would swap the two rows.
Now for the first part: the constructed sequence is equivalent.
For row a, we writea[i] for the entry in columni. Consider a sequence of operationsSort(i);X;Sort(i), whereX is another
sequence of sort operations. We will show that this sequence is equivalent toX;Sort(i). To show equivalence, we must show
that for every table, both sequences yield the same result. This can be shown by considering every pair of rowsa andb in an
arbitrary table, and showing that both sequences put them in the same order. (Actually, we rely on the following lemma. Two
permutationsp andq are equal if and only if for every paira andb, we have that a precedesb in p if and only if a precedesb
in q.)
Consider a pair of rowsa andb.
If a[i] < b[i], then the finalSort(i) in the sequence (present as final sort operation in both sequences) will order them on column
i, putting a beforeb, regardless of the effect of the preceding operations. A similar argument holds fora[i] > b[i].
If a[i] = b[i], then the finalSort(i) has no effect, and leaves the rows in the order produced by the initial part of the operation
sequence. But in that case, the initialSort(i) in the first sequence will not have changed the order ofa andb (though it may
have affected the order of other rows). Hence, the initial sequences preceding the finalSort(i) will have the same effect on the
order ofa andb.
Once we have thatSort(i);X;Sort(i) is equivalent toX;Sort(i), it follows that every sequence can be reduced to a sequence in
which every column occurs at most once, by eliminating duplicates from the left.
Programs
There are various ways to program this algorithm. There is no need to store the entire input sequence. In fact, the entire input
sequence can not be stored because of the memory limit.
Maintain the shortest equivalent sequenceSfor that part of the input sequence read so far. When reading another sort operation,
say on columni, the sequenceScan be updated by appendingi to the end ofS, and deleting any earlier occurrence ofi in S.
Thus, it is sufficient to do the following operations onSefficiently:

append an element at the end

determine if a given element occurs, and if so, where

delete an arbitrary element

Where we may assume thatScontains no duplicates (S is a permutation).
This can be accomplished in constant time: For each index that occurs, maintain its predecessor and successor. Include sentinels
at begin and end to simplify things a bit.

Complexity (optimal):
Memory: O(C)
Time: O(lengtho f input sequence)

Other approach
For each column index that has occurred, maintain the rank of its rightmost occurrence. At the end, sort the list on rank.

1



page 2 of 2

CentralEuropeanOlympiad inInformatics

28 July – 4 August 2005 Sárospatak, Hungary
http://ceoi.inf.elte.hu

Implementation

program Keys;
Const
MaxN=3000000; {max # sort operations}
MaxC=1000000; {max # columns}

Var
inFile,outFile:Text;
C, {# colunms}
n, {# sort operations}
m:longint; {length of the shortest equvilent sequence}
Next, Prev:array[0..MaxC+1] of longint; {double linked list}
C1,x,i:longint;

begin
assign(inFile, ’keys.in’); reset(inFile);
readln(inFile, C, n);
C1:=C+1;
for i:=1 to C do {indicate that column i has not occured in sort operations}
Next[i]:=-1;
Next[0]:=C1; {create an empty list by linking head sentinel 0}
Prev[C1]:=0; {and tail sentinel C+1}
m:=0;
for i:=1 to n do begin

read(inFile,x);
if Next[x]<>-1 then begin {x already occured}
Next[Prev[x]]:=Next[x]; {delete x from the list}
Prev[Next[x]]:=Prev[x];

end else {new column}
inc(m);

Prev[x]:=Prev[C1]; {append x at the end of the list}
Next[Prev[C1]]:=x;
Prev[C1]:=x;
Next[x]:=C1;

end{for i};

assign(outFile, ’keys.out’); rewrite(outFile);
writeln(outFile, m);
i:=Next[0];
while Next[i]<>C1 do begin {write out the shortest sequence}
write(outFile, i,’ ’);
i:=Next[i];

end;
writeln(outFile, i);
close(inFile);
close(outFile);

end.

2


