
Analysis of Task PACK

The general strategy will be: try all `interesting' enclosing rectangles, and save

the champions. In pseudocode:

for all interesting rectangles (x,y) do

process(x,y)

putout

The procedure process tries to put the pair of sides found into a data object.

This object consists of the value minarea (the minimum area found so far), and

a sorted list of di�erent rectangles (pairs of sides) having this area.

procedure process(x, y: sides)

if x * y > minarea then

ignore x and y

else

if x * y < minarea then

make list empty

minarea := x * y

insert (x, y)

else

insert(x, y)

The procedure insert puts the pair (x; y) in the right order and in the right

place into the sorted list of pairs in the database (if it was already there it is

ignored).

The procedure putout puts the contents of the data object in the right format

into the �le output.txt.

The procedures insert and putout are fairly standard procedures.

The interesting part is the implementation of:

for all interesting rectangles (x,y) do ...

A very naive approach

Let M be the sum of the longest sides of the four rectangles. Evidently a solution

should �t in a M �M rectangle, and M � 200.

We may iteratively try each of the four rectangles in each place:

for h := 1 to M do

for v := 1 to M do

put rectangle[m] in place (h, v)

1

Of course every rectangle should be placed once horizontally, and once vertically.

For every layout we must �nd out whether there are no intersections. If that is

the case we calculate the sides of the enclosing rectangle (call these x and y) and

do process(x; y).

As we have to try all combinations we have to try 16 �M8 possibilities. This

consumes too much time for larger values of M . (Recall that M = 200 may

occur.)

A naive approach

The algorithm of the preceding paragraph may be improved in several ways:

� Do not place the third rectangle if the �rst two are not disjoint. (This

comes down to backtracking). Likewise do not place the fourth rectangle if

the �rst three are not disjoint.

� Do not place the next rectangle if the area of the current enclosing rectangle

is larger than minarea.

� In one direction, e.g. horizontal: if a rectangle is not disjoint with one of

its predecessors, jump over it, until they are disjoint.

This changes the behaviour to O(M4+�). (Experimentally we found that the

algorithm took 20 times longer when we doubled the sides of the rectangles).

This will still consume too much time for larger values of M .

A fast solution

The information in Figure 1 tells us that there are essentially 6 basic layout

patterns. Using this information we can �nd a solution running in constant time.

A given set of rectangles can be put in several ways into one of the basic layout

patterns. First of all we have to decide which rectangle will be put in which place.

This comes down to a permutation of the rectangles, so it can be done in 4! = 24

ways. Next we have to choose an orientation for every rectangle, that is decide

whether its longest side is `lying' or `standing'. We have to make this choice four

times. This gives rise to 16 possible (combinations of) orientations. For each of

the basic layout patterns we now have 24 � 16 = 384 ways to place a given set of

rectangles.

Given one of the basic layout patterns and given the sides of the rectangles

we can easily calculate the sides of the minimal enclosing rectangle.

Let the sides of the rectangles be: x1, y1; x2, y2; x3, y3; x4, y4. (x are the

horizontal sides, y the vertical sides). Further assume that the rectangles are

placed in the �rst pattern from left to right, that is, rectangle 1 is the leftmost,

and rectangle 4 is the rightmost. (It turns out that the order of the rectangles is

2

irrelevant in this pattern, but that is not true in general). Then the height of the

minimal enclosing rectangle equals:

max4(y1; y2; y3; y4)

whereas the width equals:

x1 + x2 + x3 + x4

(here max4 is a function returning the maximum of its four arguments).

In the same way we can write down expressions for the sides of the enclosing

rectangles from the other �ve basic layouts. One easily checks that the fourth

and the �fth layout give rise to the same expressions for the sides. This leaves

us with �ve expression-pairs, each to be �lled in 384 ways giving 5 � 384 = 1920

pairs of numbers.

Calculating all these pairs is certainly not beyond the power of today's com-

puters.

Next we have to calculate the minimal area (product) from these 1920, throw

away all pairs with larger products, shu�ing the remaining pairs in the required

format and output the result. So we get the following global algorithm:

read rectangles

for all (24) permutations do

for all (16) orientations do

for all (5) layouts do

calculate the sides of the enclosing rectangle

process these sides

We now give (part of) an implementation in Pascal, in a more or less informal

style.

type

rectangle = array[1..2] of integer;

rectangles = array[1..4] of rectangle;

Implementation of the following procedures is left to the reader.

procedure readrectangles(var rects: rectangles);

procedure swaprectangles(var r1,r2 : rectangle);

procedure swapinteger(var i1, i2: integer);

An easy way to go through all permutations is recursively: successively put each

of the rectangles on the fourth place and permute the remaining three rectangles,

etc.

procedure permute(k: integer; rect: rectangles);

var i : integer;

3

begin

if k = 0 then

orient(4, rect)

else

for i := k downto 1 do

begin

swaprectangles(rect[i], rect[k]);

permute(k - 1, rect);

end;

end;

The main program is simple:

var rect: rectangles;

begin

{ do some initialization }

readrectangles(rect);

permute(4, rect);

{ output result }

end.

The procedure orient (called from permute) goes recursively through all orien-

tations:

procedure orient(k: integer; rect: rectangles);

begin

if k = 0 then

layouts(rect)

else

begin

orient(k-1, rect);

swapinteger(rect[k][1],rect[k][2]);

orient(k-1,rect)

end;

end;

For all permutations and all orientations we call the procedure layouts, which

tries all layouts:

function min(x, y: integer): integer;

function max(x, y: integer): integer;

function max3(x, y, z: integer): integer;

procedure layouts(var rect: rectangles);

var

4

h, v : integer;

x1, y1,

x2, y2,

x3, y3,

x4, y4 : integer;

begin

x1 := rect[1][1]; y1 := rect[1][2];

x2 := rect[2][1]; y2 := rect[2][2];

x3 := rect[3][1]; y3 := rect[3][2];

x4 := rect[4][1]; y4 := rect[4][2];

h := x1 + x2 + x3 + x4;

v := max(max(y1, y2), max(y3, y4));

process(h, v);

h := max(x1 + x2 + x3, x4);

v := max3(y1, y2, y3) + y4;

process(h, v);

h := max(x1 + x2, x4) + x3;

v := max(max(y1, y2) + y4, y3);

process(h, v);

h := x1 + x4 + max(x3, x2);

v := max3(y1, y4, y2 + y3);

process(h, v);

h := max3(x1 + x2, x2 + x3, x3 + x4);

v := max3(y1 + y3, y1 + y4, y2 + y4);

process(h, v);

end;

In fact all local variables in the procedure layouts are superuous. For example

we could write the formulae for the �rst layout as:

process(rect[1][1] + rect[2][1] + rect[3][1] + rect[4][1],

max(max(rect[1][2], rect[2][2]), max(rect[3][2], rect[4][2])));

We consider this expression unreadable, however.

The procedure process adds the pair (h; v) to the scorelist. The scorelist is

a global object.

var scorelist = record

minarea : integer;

5

numofrects : integer;

rects : array[1..1920] of rectangle;

end;

The size 1920 for the list of rectangles is su�cient, but exaggerated. We argued

already that the �rst layout does not generate 384 but at most 16 di�erent pairs,

because it is not changed by permuting the rectangles. If we consider the formulae

for the other layouts carefully we �nd that at most 356 di�erent pairs are possible.

Of course we save only rectangles having the (current) minimal area. So far we

were unable to �nd a problem having more than three solutions1. Initialization

of the scorelist is simple:

with scorelist do

begin

minarea := maxint;

numofrects := 0

end;

procedure process(h, v: integer);

var area, long, short : integer;

begin

long := max(h,v);

short := min(h,v);

area := long * short;

with scorelist do

if area < minarea then { new champ !}

begin

minarea := area;

numofrects := 1;

rects[1][1] := short;

rects[1][2] := long;

end

else

if area = minarea then

insert(short, long);

end;

1I would greatly appreciate motivated answers to the following questions:

1. How long is the longest list of solutions a problem may have?

2. How long is the longest list belonging to a certain (not necessarily the minimal) area?

3. If we allow reals for the sides of the rectangles, does that changes these �gures?

6

The procedure insertmust put the (ordered) pair in its proper place in the list.

If it is already in the list it should be dismissed. We must keep in mind that the

proper place might be beyond the last on. We use a sentinel for that case.

procedure insert(short, long: integer);

var k, j: integer;

begin

with scorelist do

begin

rects[numofrects + 1][1] := maxint; {sentinel}

k := 1;

while rects[k][1] < short do

k := k + 1;

{ now rects[k][1] >= short, sentinel assures termination }

{ if rects[k][1] = short : do nothing, the pair is already there }

if rects[k][1] > short then

begin

for j := numofrects downto k do

rects[j + 1] := rects[j];

rects[k][1] := short;

rects[k][2] := long;

numofrects := numofrects + 1;

end;

end;

end;

Another solution

One may try to generate the basic layout patterns without using Fig. 1.

Consider the Euclidian plane, supplied with cartesian coordinates. Consider

two rectangles in the plane, having their sides parallel with the axis. These

rectangles are disjoint if and only if in at least one direction they have disjoint

projections. In other words, the rectangles A and B are disjoint i�:

� A is at the right-hand side of B (that is: the projection of A on the �rst

axis lies at the right hand side of B's projection), or

� B lies at the right-hand side of A, or

� A lies `higher' than B (that is ...) or

� B lies lower than A.

Every pair of rectangles (there are 6 pairs) must have one of these relations.

This gives 46 = 212 = 4096 possibilities. Some of these are impossible, however

7

(e.g. A lies at the right-hand side of B, B l.a.t.r.h.s. of C and C l.a.t.r.h.s. of A).

(After removing impossibilities, and redundancies caused by reection, rotation

and permutation of the rectangles we obtain the six basic patterns of Fig. 1 in

the task).

Again, 4 rectangles together have 16 di�erent orientations, so we have to go

through 65786 cases. This can be handled within the time limit.

Peter Kluit

Scienti�c Committee IOI'95

8

