Jyrki Nummenmaa, Erkki Makinen
and Isto Aho (eds.)

IOI'01 Competition

Second Edition

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES
UNIVERSITY OF TAMPERE

A-2001-7

TAMPERE 2001

Contents

0T Yo o OSSR i

1. Introduction (Jyrki NUMMENMBEA)..........ccceruiiieriieiesieseesie et 1

P 1= PP 3
2.1 Binary codes (JanNe KUJAlA)........coueeiiriiriiee ettt 4
A =10y (oY (1 (o 1N o) RS 9
2.3 Break (Hal BUICh)......oc.ooie e s 11
2.4 Depot (Jyrki Nummenmaa and Erkki MEKINeN)..........cccoovueeiieininniee e 14
2.5 Doublecrypt (TOM VErNOEF)cooueiiiiice e 20
2.6 loiwar (GYUIAHOIVELN)..........eiiiieee e e 29
2.7 Mobiles (Timo Tossavainen and Jyrki NUMMENMAEA)...........c.ceereeeerieeeniererieeeneeenns 35
2.8 Pavement (ZOran DZUNIC)......cccuieeieerieeiesie ettt seee e 40
2.9 Score (Timo Poranen and Jyrki NUMMENMAEAL..........ccovveereriiiriienieneesee e 438
2.10 TictaC (TIMO POraNEN).......ciiiiieeiieie ettt ettt be e e aeenaeeneas 53
2.11 Twofive (Sergey Melnik and Tero Karras)........ccooeerereereenennesee e sieesie e 56
2.12 Practice competition tasks (Jyrki Nummenmaa, Timo Poranen...........cccccevcueeennenns 59

and Markku Siermala)
3. Nokia Coder Competition (Samuli Laine and Tero Karras)........ccceveeeveveeviecveescieesieeenen, 64
Appendix A — Authors

Appendix B — Competition material: example solutions, task overview sheets, rules, etc.

Foreword

The International Olympiad in Informatics is one of the six international science Olympiads. It isan
algorithmic programming competition for students from secondary schools. In 1Ol the competition
contestants compete individually in solving a set of algorithmic problems using a computer. The
problems involve programming and efficient computations.

Ol 2001 took place in Tampere, Finland on July 14 - 21, 2001. 101 2001 was organized by the
National Board of Education at the request of the Ministry of Education. The Department of Computer
and Information Sciences of the University of Tampere was in charge of the scientific and technical
content of the competition. The 101 venue was the conference and congress center Tampere Hall,
located in the very center of Tampere. Altogether 272 contestants from 74 countries took part in the
event.

The year 2001 was the year of big changes for the competition, as old MS-DOS programming
was discontinued and Linux was introduced as the new official contest environment. The solutions
were evaluated under the Linux environment, but Windows was also available for programming. This
publication is an effort to aso promote the scientific side of the IOl and give the contestants an idea of
the theory behind the tasks.

We hope that the reader finds the world of algorithmic programming and related contests
interesting.

Tampere, July 18, 2001

Editors

Jyrki Nummenmaa

1. Introduction

This book explains the competition material of 10l 2001: the tasks, their solutions, and the theory
behind them. The computing environment — compilers, hardware, and program development tools are
shortly described in Appendix B. The 101 competition is arranged annually, with an increasing number
of national delegations. The national delegation participants are selected based on nationa
competitions.

An 10l competition has two competition days. On both days, the contestants are to solve three
tasks. The tasks are of algorithmic nature. Traditionally, the competition tasks involved writing a
program to perform batch type computations. Evaluation is based on black box type of testing: a series
of test runs is executed, and to score points for atest run, the program must create the correct and
output and exit within the given time limit. Typically, the inputs for test runs are of increasing
difficulty level. The first inputs are such that even a naive program can solve them using an inefficient
method. Some inputs test certain special cases. Inputs also come in different sizes, so that also the full-
sized inputs are used to test the performance of the contestant's solution.

In 1995 in Eindhoven, reactive problems were introduced. Instead of batch type input, thereisa
dialogue between the evaluation software and the contestant's program. This enables e.g. certain types
of games to be used in the problem material. In the competition in Tampere, two reactive games were
used. In the IOlwari game, the starting player always has a winning strategy, and the contestant's
program always started. However, the evaluation opponent played optimally in that if it was given a
chance to win, it won. In the Score game, either player always has awinning strategy. All games used
in he evaluation were such that the contestant's program had a winning strategy. Again, the evaluation
opponent played optimally.

In Tampere, the competition introduced atask type not used in the IOl before: the contestants

were only asked to produce the output data for given inputs as a solution. The required solution did not
contain a program to calculate these outputs, although in practice such a program was needed to score
more that afew points from that task.

In earlier years, the contestants left MS-DOS executables in problem specific designated
directories. The test runs were performed using that those executables. The contestants did not need to
leave behind their source code. In 101'01, both Linux and Windows were provided as program
development environments. The development environments included the official compilers for the
competition, that is, gcc v. 2.95.2 and fpc (Freepascal) v. 1.0.4. In addition to this, they included
several other tools and compilers. These include the rhide and fp integrated development environments,
the Turbo C++ v. 3.0 development environment, the Turbo Pascal 7.0 development environment,
various editors such as emacs, and debuggers such as gdb and the ddd debugger built on top of gdb.
Some of these tools were, understandably, only available for either of the platforms. However, the
compilers, rhide, and fp were available on both platforms.

The evaluation was done on Linux. The contestants submitted their source code through web to a
system, which pre-checks the programs. The system compiles and makes a pre-execution check to
make sure that the program does something reasonable. For the grading system, a server and severd
grading computers were used. Only one contestant program was graded (compiled and test executed) at
atime in an otherwise “empty” grading computer. This system has been designed by Rob Kolstad
(www.delos.com). The network traffic between contestants was partly blocked and partly monitored.

We hope that the reader finds the problems and solutions instructive.

2. Tasks

This section introduces the tasks of 101'01. There are two kind of competition tasks: those who were
eventually used in the competition (loiwari, Twofive, Mobiles, Score, Double crypt, and Depot) and
those that remained as backup (Pavement and Binary codes). Also, there was one task which ended up
being a backup and the author wanted to keep the task for other use in the future. The demonstrationa
tasks were either used on a demo web server (Break, Boxes and Tictac) or in the practice competition.
The demo web server tasks provided some, although lighter algorithmic challenge. The practice tasks
(Storage, Notes, and Rocket) were only used as very simple examples to learn the environment in a
practice competition before the actual competition.

JanneKujala

2.1 Binary codes (a back-up task)

Problem

Consider a binary string (bs...by) with N binary digits. Given such a string, the matrix of Figure 1 is
formed from the rotated versions of the string.

bl bz s bN—l bN
b, bz ... by b
I:)N—l I:)N e bN—S I:)N—Z
bN bl s bN—Z bN—l

Figure 1. The rotated matrix

Then the rows of the matrix are sorted in aphabetical order, where ‘0’ isbefore‘1’. You areto writea
program which, given the last column of the sorted matrix, finds the first row of the sorted matrix.

As an example, consider the string (00110). The sorted matrix is

00011
00110
01100
10001
11000

and the corresponding last columnis (1 0 0 1 0). Given this last column your program should
determine the first row, whichis(0001 1).

[nput

The input file nameisbi ncode. i n. Thefirst line contains one integer N, the number of binary digits
in the binary string. The second line contains N integers, the binary digits in the last column from top
to bottom.

Output

The output file nameisbi ncode. out . Thefirst line contains N integers: the binary digitsin the first

row from left to right.

Example input and output

bi ncode.in bi ncode. out
5 00011
10010

Constraints

For the length of the binary code we have 1 < N £ 1000.

Solution

The following algorithm can be used to solve the problem.

Algorithm LinearBincode
1. Count the number of O's and the number of 1'sin the last column, and form the first
column from them.
2. Create an array Next which contains row numbers so that the row with theith O in the first
column pointsto the row with the ith O in the last column, and similarly with 1's.
3. Starting from the first row, go through the rows following the row indexing in Next, that
is, from row k go to row Next[K], and form missing items of the first row from the last

column values in the order in which the rows are traversed.

Lemma 1. LinearBincode solves the Bincode problem.

Proof. We say that the successor of a string isits left rotation. To prove the correctness of the
algorithm, we show that the array Next represents this successor relationship of the rotated strings.
Then, it isfairly obvious that Step 3 correctly recoversthe first row of the sorted matrix.

Consider the rows beginning with a‘0’ in the sorted matrix. Because they are in aphabetical
order with matching first bits, their left rotations (with the ‘0’ in last column) must also be in

alphabetical order among themselves. This means that the successors of the rows starting witha ‘0’
appear in order asthe rows ending with a‘0’ in the sorted matrix. The same holds for the rows starting

witha‘1l and their successors.

Lemma 2. LinearBincode runsin linear time and space.

Proof. Linear time complexity is evident, since the algorithm only traverses the input column to
count the O'sand 1's, initializes Next, and then traverses Next. Linear space complexity is also evident
as only some index variables are needed in addition to the necessary additional array Next.

In addition to LinearBincode, which obviously is an asymptotically optimal solution, we also consider

three other attempts to solve the problem. These are referred to in evaluation data generation section.

Algorithm IterativeBincode
1. Initialize aworking matrix with N rows and initially O columns.
2. Prepend the input column to the left of the matrix and sort the rows.
3. If the matrix has less than N columns, go to 2.
4. Output the first row.

Lemma 3. IterativeBincode solves the Bincode problem.

Proof. We show by induction that the algorithm builds the sorted matrix column by column
starting from the first column. The initial step with O columnsistrivial. Suppose then that the matrix
has| < N columns, which are the | first columns of the sorted matrix. Prepending the last column of
the sorted matrix yields the | + 1 first columns of aright rotation of the sorted matrix. By sorting the
resulting matrix, we obtain the | + 1 first columns of the sorted matrix, because a rotation of the sorted
matrix still has the same set of rows and the order given by the first k + 1 columns can only differ from

the correct order for rows that have the same | + 1 initial columns.

A trivial implementation of IterativeBincode requires at least cubic time because there are N
iterations and each iteration must sort a matrix of quadratic size. By noting that each sort opeartions
yields the same permutation with the rows beginning with a‘0’ moved to front, the analysis of this
algorithm quickly leads to the successor realtionship of the above LinearBincode algorithm.

The agorithm ExhaustiveBincode works as follows.

Algorithm ExhaustiveBincode

1. Generate a binary string with N binary numbers, al O's.

2. Generate the matrix and sort it.

3. If thelast column isthe input column, a solution has been found, stop.

4. Generate the next binary string with N binary numbers in the alphabetical order and go to
2.

Clearly, ExhaustiveBincode is not optimal, but since it tests al possible solutions, if needed, it is
guaranteed to solve the problem.
The last attempt is based on guessing the bincode. Since the first row isfirst in the sort order, it is
more likely that O's are at the left end of the row.
Algorithm GuessBincode
1. Count the number of O's | in the input column.
2. Generate the row with first | zeros and then N - | ones.

Test data

The test data contains 20 test cases, each generated by sorting the rotations of an input string as
described in the problem setting. The input strings are all random, except for the following four cases
of length 100

all's

al O's

01..01

0..01...1,
which are included for the purpose of detecting defects in handling of special cases. Also three small
inputs of lengths 5, 10, and 20 are included so that inefficient but correct solutions can score some
points. The lengths of the remaining 13 inputs range from 300 to 1000.

Each test case isworth 5 points and the distribution of input lengths is chosen so that the example
implementations of LinearBincode, IterativeBincode, ExhaustiveBincode, and GuessBincode
algorithms score 100, 40, 10, and 15 points, respectively.

Background

This problem is a special case of the reversible transform used in the Burrows-Wheeler block sorting
compressor [1]. The original version used a general alphabet. The idea of using only a binary alphabet
isthat the task is then simpler but at the same time the solution is less obvious as the substring given by

the last and the first characters of arow seems rather useless now as it can appear in quite many
positions of the input string.

Reference

[1] M. Burrowsand D. J. Wheeler, A block-sorting lossless data compression algorithm, Digital
System Research Center, Research Report 124, 1994,

Isto Aho

2.2 Boxes (a demo task)

Problem

Santa Claus has found a nice new seigh from the sleigh shop. Santa's old sleigh and the new deigh
have equal amount of room for the magic boxes Santa Claus uses to carry Christmas presents. For
comparing seighs, Santa's elves have carried a set of boxesto the shop. Each box has an integer
volume. Santa Claus wants to compare the flying properties with sleighs packed so that the sums of the
box volumes in the deighs are as close as possible to a desired value.

Suppose that the desired sum of box volumes for both deighsis D, and that a deigh is packed so
that the sum of the volumesin the deighis S. If SE D, then thefilling of that sleigh is S, and
otherwise the filling is max(0, 2D - S). Given volumes of the available boxes and the required filling of
the deighs, you are to find such a placement of boxes for the two deighs that the sum of the fillings of
the two deighsis as large as possible.

I nput

The input file names are boxes.inl, where | is one of characters 1, 2, 3, 4, or 5. Thefirst line of the
input file contains one integer, the number of boxesN, 1 £ N £ 17. The second line contains the
desired sum of box volumes D, which is the same for both sleighs. For D it holdsthat 1 £ D £ 100 000
000. The third line contains N integers wi, wWs,...,Wn,, the volumes of the N boxes. For each w; we have
1 £w; £50000000 (1 £i £ n).

Output

The first line of the output file contains the string
#FI LE boxes |

where | isthe number of the input file respective to this output file. The second line contains one
integer F, the sum of the fillings of the two sleighs. Then follow N lines, which describe the placement
of the boxes as follows. On each of these lines there are two integers, W and K, where W is the size of
one of the boxes (each box must appear in output), and K is the deigh number of the deigh for that
box. Use dleigh numbers 1 and 2 for the deighs and O if the box should not be placed in either of the
deighs.

Example inputs and outputs

To make a difference between the example and real inputs, we use input number O here.

boxes. i n0 An output file to be submitted
5 #FI LE boxes 0
11 20
567809 70
9 2
80
51
6 1
Solution

The problem is NP-complete and hence enumerative solution can be used only for small inputs.
Number of boxes is bound by 17, and there are only two deighs. Hence, this can be considered as a
small case, and by trying every solution we'll find the right answer.

There are at most 3" = 129140163 different solutions. We have to use three, because it is not
required that every box is assigned into a deigh.

| dea of the enumerative solution is the following. Let the number of boxesisb. We use a vector
of length b to describe the assignment of each box into sleigh (1 or 2) or to tell that the itemis not
assigned at all (value 0). Now we can interpret the solution vector as a 3-base number having n-digits.
Short pseudo-code of the enumerative solution:

1. Initialize variables

2. J=n-1(nisthe number of the magic boxes)

3. while(j >-1)

4, Count the result for this solution. Record, if new best found.
5 I ncrease number by one.

6 if al dots0ton- 1inthe solution contain 2, set j =-1.

Hal Burch

2.3 Break (a demo task)

Problem

Santa Claus has a set of fields for his reindeers. In addition to the fields, there is also a set of such
roads, that each road can be used for travelling between exactly two fields. Right now, the roads are
arranged in such away that it is possible to travel from any field to any other field, in which case we
say that all fields are connected. Santa is concerned that if aflood washes away aroad, this may no
longer be true. Any path whose removal means that all fields are no longer connected, is called
essential. You areto write a program which, given information about the fields and roads, computes

the number of essential roads.

Figure 2. A sample case

Figure 2 shows fields F1, F2, F3 and F4, and a set of roads. The only essential road is the road
between fields F1 and F2, and, thus, the number of essential roadsis 1.

I nput

The name of the input fileisbr eak. i n. Thefirst line contains two integers, the number of Santa's
fieldsF, 1 £ F £ 100000, and the number of roads R, 1 £ R £ 150000. The fields are identified with
integers from 1 to F. The next R lines each contain information about one road, integers a and b, where
a and b are the numbers of such fields that the road represented by that input file line can be used for

travelling between fields a and b. The order of a and b on the line is meaningless.

Output

The name of the output fileisbr eak. out . Thefirst line of the output file contains one integer: the

number of essential paths.

Example input and output

The following example input and output match the situation in Figure 2.

break.in br eak. out

NWNEFE B~
ArBRWNPA

Motivation

The motivation of the problem comes from an algorithm to discover the biconnected components of a
graph. Itisasimplification of that problem, since the original algorithm is a little too cumbersome for
an 10I-style problem. This has the additional advantage that slower algorithms are more obvious,
which allows for stratification of the results. Moreover, the solution to this problemis not asimple

extension to a core algorithm.

Solution

With no loss of generality, we may assume that the containers are numbered from 1 to N. The
following algorithm can be used to solve the problem for small inputs.

Algorithm 1

Do adepth first search with adigoint set data structure. Any edge not in the depth first search treeis
not a bridge every time you find an edge to a visited node that isn't your parent. Mark the nodes up to
the other end of the edge (the other node is an ancestor of yoursin the tree). Collapse the digoint set
data structure when thisis done. The edge between any node that isn't marked and isn't the root of the
tree and the node's parent is a bridge.

The basic marking structure is:

for (p = descendent; p != ancestor; p = parent[p]) mark(p);

Y ou have to use depth to handle the collapsing:

for (p = descendent; depth[p] > depth[ancestor]; p = parent[p]) mark(p);
Asymptotic running time for this algorithmis O(N + M log* M) .
Algorithm 2

Delete each edge and determine if graph is disconnected . Asymptotic running time for this algorithmis
O((N+M) M) .

Jyrki Nummenmaa and Erkki Makinen

2.4 Depot (a competition task)

Problem

A Finnish high technology company has a big rectangular depot. The depot has aworker and a
manager. The sides of the depot, in the order around it, are called left, top, right and bottom. The depot
areais divided into equal-sized squares by dividing the areainto rows and columns. The rows are
numbered starting from the top with integers 1, 2,... and the columns are numbered starting from the
left with integers 1, 2,...

The depot has containers, which are used to store invaluable technological devices. The
containers have distinct identification numbers. Each container occupies one square. The depot is so
big, that the number of containers ever to arrive is smaller than the number of rows and smaller than
the number of columns. The containers are not removed from the depot, but sometimes a new container
arrives. The entry to the depot is at the top left corner.

The worker has arranged the containers around the top left corner of the depot in such away that
he will be able to find them by their identification numbers. He uses the following method.

Suppose that the identification number of the next container to be inserted is k (container k, for short).
The worker travels the first row starting from the left and looks for the first container with
identification number larger than k. If no such container is found, then container k is placed
immediately after the rightmost of the containers previoudly in the row. If such a container | is found,
then container | is replaced by container k, and | isinserted to the following row using the same
method. If the worker reaches arow having no containers, the container is placed in the leftmost square
of that row.

Suppose that containers 3, 4, 9, 2, 5, 1 have arrived to the depot in this order. Then the placement

of the containers at the depot is as follows.

145
29
3

The manager comes to the worker and they have the following dialogue:
Manager: Did container 5 arrive before container 4?
Worker: No, that isimpossible.
Manager: Oh, so you can tell the arrival order of the containers by their placement.
Worker: Generally not. For instance, the containers now in the depot could have arrived in the order
3,2,1,4,9,5 orintheorder 3,2, 1,9, 4,5 orinoneof 14 other orders.
As the manager does not want to show that the worker seems much smarter, he goes away. Y ou
are to help the manager and write a program which, given a container placement, computes all possible

orders in which they might have arrived.

I nput

The input file name is depot . i n. The first line contains one integer R: the number of rows with
containers in them. The following R lines contain information about rows 1,..., R starting from the top
asfollows. First on each of those linesis an integer M, the number of containersin that row. Following
that, there are M integers on the line: the identification numbers of the containers in the row starting
from the left. All container identification numbers | satisfy 1 £ 1 £ 50. Let N be the number of
containersin the depot, then 1EN £ 13.

Output

The output file name isdepot . out . The output file contains as many lines as there are possible arrival
orders. Each of these lines contains N integers, the identification numbers of the containersin the
potential arrival order described by that line. All lines describe an arrival order not described in any
other line.

Example inputs and outputs

Exanpl e 1: depot.in depot . out

N OTWwWwWw
'_\
N

N
©

W W W W WWWWWWWwowww
ONNARNONNRARMNONNRANDN
VORONNORNONNORNNPRPRP
RRONORMDNONORRRERR OMN
NOOUVIURRRPRPRPRANDNOORNO
SR RRRP OGO OOO 0000

Example 2 depot.in depot . out

3
1

12
32

P NN
w

Scoring

If the output file contains impossible orders or no orders at al, your scoreis O for that test case.
Otherwise the score for atest case is computed as follows. If the output file contains all possible orders
exactly once, your score is 4. If the output file contains at least half of the possible orders and each of
them exactly once, your scoreis 2. If the output file contains less than half of the possible orders or
some of them appear more than once, your scoreis 1.

Solutions

With no loss of generality, we may assume that the containers are numbered from 1 to N. The
following algorithm can be used to solve the problem for small inputs.

Algorithm GenerateAndTestDepot

Generate al permutations of numbers. For each permutation, generate the placement of containersin
the depot using the method used by the worker and compare the placement with the input placement.

Output all permutations, for which the generated placement is the same as the input placement.

Lemma 1. GenerateAndTestDepot solves the Depot problem.

Proof. Not avery interesting one...

However, GenerateAndTestDepot only works with fairly small numbers of N. The rest of our
solutions are based on the following idea. Make successive removals, recovering the state of the depot
as if the removed item had been the last inserted item. Recovering the depot might involve pulling up

items from rows below (as opposed to pushing them down when inserting items).
Algorithm BacktrackingDepot

For al items on the top row, call RecursiveDelete(inputdepot, item, solution) with empty solution.
Procedur e RecursiveDelete(depot, item, solution)
If the item is the last item left in the depot, add it to the solution and output solution.
If the item is not the last item left in the depot, then for al items on the first row, delete the item
from the depot, add it to the solution, and call RecursivePullUp(depot, item, 1,solution)

Procedur e RecursivePullUp(depot, item, solution)
If we are on the last row, then we just find all the items based on their values, which can replace
the item on the previous row. For each such item found, remove that item and call
RecursiveDelete(depot, newitem, solution) for al newitem values on the first row. (Thisis equal
to finishing pulling up and continuing recursion.)

If we are not on the last row, then we similarly find all the items based on their values,
which can replace the item on the previous row. For each such item found, call

RecursivePullUp(depot, newitem, solution) recursively.

L emma 2. BactrackingDepot solves the Depot problem.
Proof. BacktrackingDepot tries out every possible way to delete al containers from the depot.
That's it.

An unfortunate thing with BactrackingDepot is that it may be highly inefficient. In fact, it favours
inputs where there are lots of short rows (optimally N rows with 1 item). However, with an input file
with just one row of N items, the solution is no more efficient than GenerateAndTestDepot (as a matter
of fact, due to implementational overhead, it islikely to be even dower than GenerateAndTestDepot).
One obvious optimisation is readily available: As soon as there is only one row left, we can form the
rest of the solution in linear time, as the items must have been inserted in the order where they are, as

otherwise some item would have pushed some other item down. Already this in practice speeds the
process up considerably.

Even with this optimisation, it is clear that the solution is inefficient. However, RecursivePullUp
seems to be doing much extrawork to what is really needed. A little investigation reveals the following

lemma.

Lemma 3. Assume d isadepot with N - 1 itemsin it. Consider pushing down avauey from row
r to row r + 1 with the insertion of value x to row r while computing a depot with N items. Then,
clearly, x <y and for the value y' previous to y on row r before pushing, it holds that y' < x.

Proof. Obvious from the way insertions are done.

From Lemma 3 we get the following lemma.

Lemma 4. Assume d is adepot with N itemsinit. Consider pulling up values fromrow r + 1 to
row r, while computing a depot with N - 1 items. Then, each value on row r + 1 can only be considered
when finding the replacement for exactly one of the items on the row above.

Proof. Follows from Lemma 3.

With Lemma 4 we can slim down the search considerably. If we keep indexing for the depot
showing which items can be pulled up from the row below for each item on each row, and only study
those, then we speed up the search considerably. However, with smallish values of N (under 15) the
optimisation does not really pay off, since the rows are so short. The same applies for using some
asymptotically more efficient data structure for arranging the rows. Another algorithmis available
using the following lemma.

Lemma 5. The last item to be positioned when an itemisinserted is going to end up at the end of
arow, and the row above it must not be shorter than the row below.
Proof. Should be quite straightforward to see.

Lemma 6. Any one of the items at the end of arow, where the row above isnot equally long,
may have been added last.

Proof. Follows quite easily using Lemma 5.

This suggests a similar search to the one we have proposed before, but starting from the bottom.

The advantage is that we only start from such items that they can be moved up reversing an insertion,
as opposed to the other method starting from the top, where we might start with an item which can not
be the last item inserted.

Background

This problem was motivated by the theory of tableaux and permutations. The depot represents a Y oung
tableau. A reader interested in the subject is encouraged to study the area from Knuth's book [1].
However, Knuth does not treat the problem of computing the permutations, which yield a given Y oung
tableau. In his book a classical result is given, where it is said that there exists n® different forms for a
tableau with n items. From Lemma 6 and this it follows that there are only n? possible numbers of
solutions. Gyula Horvath [2] has studied these numbers empirically further than the authors, and
suggested a variation of the task, where we only ask for the containers that could have arrived first.

We thank Isto Aho for helpful discussions, and Tero Karras, Janne Kujala, and Samuli Laine for test

solving the task, and helping the authors to see some of the properties of the problem.
References

[1] Donald E. Knuth, The Art of Computer Programming , Vol. 3, Addison-Wesley, 1973.
[2] GyulaHorvath, private communication, 2001.

Tom Verhoeff

2.5 Double crypt (a competition task)

Problem

The Advanced Encryption Standard (AES) involves a new strong encryption algorithm. 1t works with
three blocks of 128 bits. Given a message block p (plaintext) and a key block k, the AES encryption

function E returns an encrypted block c (ciphertext):
c=E(p,K) .
The inverse of the AES encryption function E is the decryption function D such that
D(E(p, k), k)=p, E(D(c,k),k)=c.
In Double AES, two independent key blocks k; and k, are used in succession, first ki, then ko:
c2=E(E(p, ki), k2).

In this task, an integer sis aso given. Only the leftmost 4* s bits of keys are relevant, while the
other bits (the rightmost 128 minus 4* s bits) are al zero.

Y ou areto recover the encryption key pairs for some messages encrypted by Double AES. You
are given both the plaintext p and the corresponding double-encrypted ciphertext c,, and the structure
of the encryption keys as expressed by the integer s. The AES encryption and decryption algorithms are

available in alibrary. Y ou must submit the recovered keys, and not arecovery program.

I nput

Y ou are given ten problem instances in the text files named doublel.in to doublel0.in. Each input file
consists of three lines. Thefirst line contains the integer s, the second line the plaintext block p, and
the third line the ciphertext block c, obtained from p by Double AES encryption. Both blocks are
written as strings of 32 hexadecimal digits (‘0’..’9", ‘A’..’F’). The library provides aroutine to convert

strings of blocks. All input files are solvable.

Output

Y ou are to submit ten output files corresponding to the given input files. Each output file consists of
three lines. Thefirst line contains the text

#FI LE doubl e |
where | is the number of the respective input file. The second line contains the key block k;, and the
third line the key block k», such that

C2 = E (E(p, k1), k2).

Both blocks must be written as strings of 32 hexadecimal digits (‘0’.."9’, *A’..”F). The library provides
aroutine to convert strings of blocks. If there are multiple solutions, you need submit only one of them.

Example

As an example we use input file number O here.

doubl e0.in A possible output file

1 #FI LE double O
00112233445566778899AABBCCDDEEFF A0000000000000000000000000000000
6323B4A5BC16C479EDGDO4F5B58FF0C2 70000000000000000000000000000000

Library
FreePascal library (Linux: aeslibp.p, aeslibp.ppu, aeslibp.o;
W ndows: aeslibp.p, aeslibp.ppw, aeslibp.ow):
type
HexStr = String [32]; { only '0".."9", "A..'"F }
Block = array [0..15] of Byte; { 128 bits }

procedure HexStrToBl ock (const hs: HexStr; var b: Block);
procedure Bl ockToHexStr (const b: Block; var hs: HexStr);
procedure Encrypt (const p, k: Block; var c: Block);

{ ¢ =HEpk }
procedure Decrypt (const c, k: Block; var p: Block);

{ p=0DcKk)}

The program aestoolp.pas illustrates how to use the FreePascal library.

GNU C/C++ library (Linux and Windows: aeslibc.h, aeslibc.o):

typedef char HexStr[33]; /* '0".."9", "A..'"F, '"\0 -termnated */

t ypedef unsigned char Bl ock[16]; /* 128 bits */

voi d hexstr2bl ock (const HexStr hs, /* out-param*/ Block b);

voi d bl ock2hexstr (const Block b, /* out-param*/ HexStr hs);

void encrypt (const Block p, const Block k, /* out-param*/ Block c);
/* ¢ = E(p, k) */

voi d decrypt (const Block c, const Block k, /* out-param*/ Block p);
/* p = D(c, k) */

The program aest ool c. c illustrates how to use the GNU C/C++ library.

Constraints

For the number s of relevant hexadecimal digitsin akey it holdsthat 1 £ s£ 5. Hint: A good program

can recover any keysin less than 10 seconds for any allowed input file.

Abstract formulation

Given is a pair of encryption-decryption functions E, D, such that
D(E({pKkK.k)=p and E(D (ck),k)=rc,

for all plaintext messages p, ciphertext messages c, and keys k.

The encryption algorithm is “strong”, in the sense that no better method of recovering k for given
p and c = E(p,k) is known than an exhaustive search through the key space. Given ten double-
encrypted pairs p, c2 = E(E(p,k1),k2), the competitors have to recover the key pairskl, k2.

History

"Rijndael" was recently selected from five candidate encryption algorithms by the National Institute of
Standards and Technology (NIST) in the USA to be proposed for the new Advanced Encryption
Standard (AES). It has been subjected to intense scrutiny, and currently no weaknesses are known or
expected to surface any time soon. In particular, there are no known * weak” keys (in contrast to the
Data Encryption Standard DES). [See www.nist.gov/aes/]

The AES can be used with 128-hit keys and messages (and also 192 and 256). In this task, the
key space is artificially reduced to control the difficulty of the instances.

Solution

Double encryption, as applied in this task, is known to provide much less extra security than may at
first seem to be the case. If the key length is n bits for single encryption, then an exhaustive search goes
through all possible 2" keys. Double encryption with two independent n-bit keys may seem to
correspond to encryption with a single 2n-bit key. However, the so-called “meet-in-the-middle attack”
shows that it is actually no stronger than a single (n+1)-bit key. In practice, triple encryption is used
(e.g. known in Triple DES). [See e.g., Bruce Schneier, Applied Cryptography, Second Edition, Wiley,
1996]

The meet-in-the-middle attack works as follows. The given plain text p is encrypted with al
possible 2" keys and the results are stored (one way or another) in atable. Next, the given double-
encrypted ciphertext c2 is decrypted with all possible 2" keys, and each result is checked against the
table for a“collision”. Such a collision reveals a“double key” used for encryption.

It is possible that more than one key pair works, though extremely unlikely (you could earn some
money with such key pairs :-). Inthistask, only one of key pair needs to be found. For the input cases
selected, it can easily be checked whether the solution are unique with in the imposed constraints (as
indeed they are).

Let us consider the required computational effort in some more detail. The key space can be
traversed by implementing two operations

FirstKey (var key: Block);
Next Key (var key: Block): Bool ean;

where the return value of NextKey indicates whether key indeed had a successor.

The table needs to provide the following operations:

Enpt yTabl e;
initialize to enpty table
Store (const nsg: Block; const key: Block);
i nsert a nmessage-key pair (nsg, key) where nsg = Encrypt (p, key)
Retrieve (const nmsg: Block; var found: Bool ean; var key: Block);
det erm ne whet her nmessage nsg is present, and if so, with which key k
such that nmsg = Encrypt (p, key)

A Block equality test is aso needed, to verify correct retrieval. Both the Store and the Retrieve
operations need to be fast, preferably in constant time (O(1)), which suggests a hashed dictionary.
Let us consider this from the task designer's viewpoint, who does not yet know all the various

parameters (such speed and memory size of computer and the limits to impose). It seems reasonable to

store the relevant part of the key (say at most 4 bytes, minus 1 special value to indicate an empty entry

in the dictionary), and to hash the encrypted message to a hash value in a suitable range. The message

need not be stored, since it can be reconstructed from the given plaintext and the key. But if thereis

enough space, it can also be stored in 16 bytes. Thus, additional operations that are needed:
ConpressKey (const key: Block): ConpressedKey; (24 bit)

Unconpr essKey (const ck: ConpressedKey; var b: Block);
HashMessage (const b: Block): HashVal ue;

Let us assume 64 MB RAM for the table (this seems reasonable on a 128 MB machine; 64MB is
the minimum for smooth operation of the operating systems, and | expect at least 128 MB). This means
2% pytes available for the table. With 4 = 22 byte per entry, this allows for 22* entries. Thus, a 24-bit
hash value seems sufficient. Given the good encryption properties of AES, it should suffice to take the
first 24 bits of the encrypted plaintext as hash value. We use a special out-of-range key value in the
table to indicate that an entry is unoccupied. This also means that there should not be 2** or more keys
(otherwise, several passes need to be made: build the table for each group of 2** keys, and for each
such group decrypt with ALL possible keys). What about hash collissions when storing data? We have
doubled the dictionary size to include enough empty entries to get a good response time.

In the worst case (maximum key size K hits), 2 store operations and retrieve operations need to
be done. Each store is accompanied by an encryption, and each retrieve by a decryption. If the
encrypted message itself is not stored (but only its key), then also one or more encryptions are needed
to verify equality of the message string.

| do not expect that more than 10° ~~ 2% encryptions+stores can be done per second on the
competition machines. Let us assume 10* ~~ 2*3, then breaking a 24-bit key takes at most 3*2%%/2'3=
3* 2™ seconds (2 hours!), a 20-bit key takes at most 3* 2%/2"® = 3* 2" seconds (less than 10 minutes).
For 10° cycles per second, breaking a 24-bit key takes 3*2* seconds (one minute!), and a 20-bit key
takes 3 seconds. The brute-force approach is quadratic and under the best circumstances, breaking a 20-
bit key with 10° encryptions per second would take 3*2?° seconds, or about one month!

It turns out that AES decryption is a factor two slower than encryption. Furthermore, the selected
competition computer (933 MHz Pentium-111) does about 0.5e6 AES encryptions per second. For the
competition, the upper bound on swas set at 5.

Grading

The most important parameter isthe key sizes. At small key sizes, an exhaustive search over the
combined key space is still feasible. The plaintext message does not matter at all, provided that the
encryption algorithm isindeed “strong”. The choice of key pair needs more attention, because it

should not be too “easy” to find “accidentally”. Thus, key values near the extremes should be avoided
in general. However, the competitors are free to choose how they traverse the key space, and the
organizers cannot know, in general, what constitutes a bad key choice.

Note that special cases had better be avoided, such as identical first and second keys, or keys that
are very close together, or keys with patternsin them (e.g. all hex-digits equal).

The ten cases that were selected for the competition have the following characteristics:

Case s T ki1 k2 Comment s
1 1 P A .. 7. .. This case is the sane as the exanple
2 1 R C.. 5... Can be solved nmanually with the too
3 2 P A7... 6E. .. Can be sol ved by exhaustive search
4 2 C EL.. 8A. .. Can be sol ved by exhaustive search
5 4 R A39E.. B760. .
6 4 R 893D... F66B. .
7 4 R 9325... 0000. .. Extrene key at one end of key space
8 5 C (CB053... 7FOF9..
9 5 P A7000... 6E000... Sane answer as case 3
10 5 P 59D04... FFFFF... Extreme key at other end of key space
wher e
s = nunber of relevant hexadeci mal key digits (task input)
T = type of plaintext/ciphertext:
P for structured plaintext (random | ooking ciphertext)
C for structured ciphertext (randoml ooki ng pl ai ntext)
R for random pl ai nt ext/ci phert ext
ki = first key (task output)
k2 = second key (task out put)
Notes

All answers can easily be verified by the interactive tool that was provided. All possible key digitsO, ..,
F appear in the keys, including duplicates. Structure in the plaintext or ciphertext cannot be exploited.

Cases with s = 4 can be solved by exhaustive search, but each takes more than one hour. Because
these three cases have the same plaintext, they can be attacked together with exhaustive search, to solve
three cases for the price of one case plus alittle bit. Even a straightforward implementation of the
meet-in-the-middle attack works in seconds.

Cases with s =5 require a good implementation of the meet-in-the-middle search. They cannot
be solved by exhaustive search within the five hours of the competition. However, case 9 has the same
solution as case 3! This can be recognized by inspecting the input files.

Variations

Several other formulations were considered, but rejected. For instance, instead of measuring the
relevant size of akey in hexadecimal digits, it could be measured in bits. This allows for finer

variations in the level of difficulty, but is also harder to formulate, because bit order in bytes
(endianness) startsto play arole. Another variation used hexadecimal stringsin the interfaces of the
encryption and decryption routines. The available AES encryption and decryption implementations
work on 128-hit blocks. Hence, the library would need to convert on every call, thereby introducing a
considerable time penalty.

The source of the library need not be secret, because knowing the encryption algorithm does not
make the job easier. On the contrary, it is awaste of time to read the details of the encryption
algorithm. For that reason, it was not made avaible.

The encryption/decryption agorithm does not have to be the actual AES. Using the actual AES
lends the task a touch of timeliness. The AES algorithms are comparable in speed to those for DES
(Data Encryption Standard). Note that the encryption method needs to offer a certain minimal amount
of real security, because we do not want the competitors to break the encryption agorithm (by finding
ashortcut to key recovery, rather than using a“smart” search).

We use zero-padding to reduce the key space artificially. Padding can be done either on the left
or the right (either way, the increment operation on 32-bit values cannot be used to simplify traversing
the key space, because the byte order in 32-bit values and the order of the hexits in a byte are not
“compatible”). Alternatively, the key space can be reduced by restricting the values of (say) four
nonzero bytes, or by duplicating parts of the key.

The size of the plaintext message and encrypted message can be chosen smaller (for AES, 128
bitsis the minimum). Note that zero padding the plaintext does not (usualy) result in a zero-padded

ciphertext.

Aestool

The programs aestoolp and aestoolc given to the competitors serve three purposes:

1. They show the competitors how the libraries aeslibp and aeslibc can be used.

2. They provide asimple user interface (via stdio) for the libraries aeslibp and aeslibc,
enabling the competitors to play around “ manually” with the library. For example, they
can now easily verify the example input and output file.

3. They provide the organizers a simple means to apply a quick test to check that the library
works asintended. In particular, avery smple (and limited) test isto encrypt the all-zero
plaintext with the all-zero key, which should result in ciphertext:

66E94BDAEF8A2C3B884CFAS9CA342B2E

Decrypting this should again yield the al-zero plaintext.

The Pascal tool starts with the following output:

Interactive Tool for Using Library aeslibp

Pl ai ntext = 00000000000000000000000000000000
Key = 00000000000000000000000000000000
G phertext = 00000000000000000000000000000000

HexStr index 12345678901234567890123456789012 (nmod 10)
Bl ock i ndex 0123456789012345 (nmd 10)
P(l ai ntext, K(ey, C(iphertext, E(ncrypt, D(ecrypt, S(wap, Quit?

After the ‘7, asingle letter command must be typed, followed by ‘Enter’. The known commands

are the uppercase letters before each * (. The commands have the following meaning:

P(l ai nt ext : asks for a new pl ai nt ext

C(i phertext: asks for a new ciphertext

K(ey: asks for a new key

E(ncrypt: encrypts given plaintext under given key to ciphertext
D(ecrypt: decrypts given ciphertext under given key to plaintext
S(wap: swaps pl ai ntext and ci phertext (sinplifies chaining)
Quit: term nates program execution

Plaintext, ciphertext, and key can be entered using lowercase and/or uppercase characters. These
blocks are automatically right-padded with zeroes.
The C version is very similar for aeadlibc. At start it prints:

Interactive Tool for Using Library aeslibc

Pl ai ntext = 00000000000000000000000000000000
Key = 00000000000000000000000000000000
G phertext = 00000000000000000000000000000000

HexStr index 01234567890123456789012345678901 (% 10)
Bl ock i ndex 0123456789012345 (%10)
P(l ai ntext, K(ey, C(iphertext, E(ncrypt, D(ecrypt, S(wap, Quit?

Note that HexStr indices now start at O.

No detailed description of these programs is to the competitors, because they get the source and
should be able to understand that. Furthermore, they can experiment at will, so figuring out the toolsis
part of the game.

Other development tools

Severd other tools were developed to support the design of the task. These were

dbl gen: a generator of input files given sone paraneters

dblifv: an input file format validator

dbl of v: an output file format validator

dbl chk: a sinple output file checker (against given input file)

doubl e-checker: a robust output file checker (using Robln, ny
Robust | nput nodul e)

And, of course, various solution programs in Pascal and C, and dozens of output files with al kinds of

funny things in them to test the entire system.

Gyula Horvath

2.6 loiwari (a competition task)

Problem

The Mancala family of games with beads and pits is among the oldest forms of human entertainment.
Thistask introduces a version of the game especially developed for the |Ol. The game is played by two
players on around board with seven pits around the edge. In addition, there is a bank for each player.
The game begins by randomly distributing 20 beads into the pits so that each pit contains at least 2 and
at most 4 beads. The two players move alternately. To move, the player chooses a non-empty pit and
takes all beads out of the pit, and holds them in her hand. Aslong as there are beads in the player’s
hand, she considersthe pitsin clockwise order, starting one after the emptied one, and performs the
following operations:

More than one bead in your hand: If the current pit already contains 5 beads, then take one bead out
of the current pit and place it into your bank, otherwise place one bead from your hand into the
current pit.

One bead in your hand: If the current pit contains at least one and at most four beads then move all
beads from the pit and the one from your hand into your bank, otherwise (the pit contains 0 or 5
beads) place the bead in your hand into the opponent's bank.

The game is over when after a move all pits are empty and the winner is the player with most beads in
her bank.

The starting player always has awinning strategy. Y ou are to write a program, which plays
loiwari as the starting player and wins. The evaluation opponent plays optimally, that is, once given a

chance, it will win and your program will lose.

Input and output

Y our program reads input from standard input and writes output to standard output. Y our program is
player 1, and the opponent is player 2. When your programis started, it must first read aline with 7
integers ps,..p7, the initial number of beadsin pits 1,..7, respectively. The pits are labeled with integers
from 1 to 7 in clockwise direction on the board. After this, the game starts with empty banks. Y our

program should play as follows:

If it is your program’ s turn to move, then your program should write the label of the pit describing
the move to standard output
If it is your program’s opponent’s turn to move, then your program should read the label of the pit

defining the move (the pit from which the beads are removed) from standard input.

Tools

You are given aprogram (i oi war i 2 on Linux, i oi wari 2. exe on Windows), which plays from one
initial game position optimally as Player 2. It will first write to standard output the first line your
program is supposed to read, describing the initial values of beadsinthat game: 4 3 2 4 2 3 2

After this, the program will play the game, trying to read Player 1's moves from standard input and
writing its own moves to standard output. Y ou can run your program and ioiwari2 in separate windows
and transfer the conversation manually to both programs. i oi wari 2 records the dialogue in the file

i oi wari . out.

Programming instructions

In the examples below, you are reading the last integer of the input into variable | ast and the variable
mynove contains your move.

If you program in C++ and use iostreams, you should use the following implementation for reading
standard input and writing to standard output:

cout <<nynove<<end| <<f | ush;
ci n>>| ast;

If you programin C or C++ and use scanf and printf, you should use the following implementation for
reading standard input and writing to standard output:

printf("%\n", mynove); fflush (stdout);
scanf ("%", &l ast);

If you program in Pascal, you should use the following implementation of reading standard input and
writing to standard output:

Witel n(nynove);
Readl n(l ast) ;

Example

Hereis a correct sequence of 6 moves

Pit and bank contents after the operation

Operation/Pit label 1 2. 3 4 5 6. 7. Bakl Bank2
Initial situation 4 3 2 4 2 3 2 0 0
Player 1's move: 2 4 0 3 5 0 3 2 3 0
Player 2’s move: 3 4 0 0O 4 1 4 0O 3 4
Player 1's move: 5 4 0 0O 4 0 0 0O 8 4
Player 2’s move: 4 0 0 0O O 1 1 1 8 9
Player 1's move: 5 0 0 0O O 0 0 1 10 9
Player 2’s move: 7 0 0 0O O 0 0 0 11 9

Scoring

If your program wins atest run, then you get 4 points for that test, atie in atest gives you 2 points for
that test, and otherwise you get O points for atest.

Solution

Various parameters (number of the pits, number and distribution of the beads, and especially the game
rule) have been tuned to satisfy the following requirements:
the game is winnable by the first player
not easy to win in most game instances
efficient solution possible with reasonable resource limitations (memory and CPU time)
draw is possible
the number of different game instances is sufficient for testing.

Consider the directed graph whose nodes are the pairs <w, B>, wherew is 1 or 2, indicating who
isto move next and B is any possible game board (disregarding from the banks). There is an edge from
anode <u, A>to anode <v, B> if and only if u + v = 3 and B is obtained from A by alegal move.
Since every move decreases the sum of the beads in the pits, this graph is acyclic.

Let Diff(w, B) be the best score difference for the first player that can be achieved from the game
position B, assuming that the second player plays his best. Then

0, if B isempty
Diff(w,B)= { Max{ Diff(2, Move(B, i)) + D(B, i): for all legal movei}, if w =1
Min{ Diff(1, Move(B, i)) + D(B, i): for al legal movei}, if w = 2,
where Move(B, i) is the board obtained by moving with pit i and D(B, i) is the difference of the number

of beads placed in Bank1 and Bank2 when moving with pit i. It is evident, that the first player has
winning strategy for a game instance B iff Diff(1, B) > 0.

Recursive Algorithm

The recursive formula for Diff immediately gives a solution to the problem: first player always moves
with pit i, which gives the maximum in the formula. It is obvious that this algorithmis not efficient,
since it must make a call of Diff before each move. Moreover, the recursive computation recomputes
the desired value for a board each time it is accessed.

Memoizing algorithm

We can improve the efficiency of recursive algorithm by storing the values Diff(w, B) once computed.
In order to store these values, we assign a unique id number for each possible board. Since during the
game, each pit contains at most 5 beads, therefore a board can be uniquely identified by a seven digit
base-6 number. The program first computes the optimal value for the sub-problems Diff(w, B) and
stores the optima move in atable. Computation is done by recursion with memoization. During the
play, the algorithm looks up for the optimal move in this table.

Space required is 3*MaxN bytes, where MaxN is the largest seven digit base-6 number, which is
279935. We note that the space can be reduced by afactor of 2, if we assign to every board the base-6
number of its rotational equivalent which gives the smallest number.

Time complexity of the algorithm is proportional to the number of edges of the graph (plus
initialization of the tables). A rough upper bound is 7*MaxN. In addition to the Memorizing
algorithm, we also consider three other attempts to solve the problem. These are required to select the
appropriate set of game instances for test.

Greedy algorithms

One can play the game by one step look-ahead greedy strategy. The player always takes those move,
which gives the local optimum. Testing of this algorithm shows that for several game instances, the
greedy strategy is winning. Making two steps look-ahead gives worth algorithm, it almost always loses
the game.

The one step look-ahead greedy algorithm has been implemented in the file owar i g1. pas, and
two the step look-ahead greedy algorithm in the file owar i g2. pas.

Random algorithm

The last attempt is based on randomization, or guessing the right move. Fortunately, the probability of

winning a game by doing random choice is very low.

Test data

There are 51 different game instances modulo rotation. The solutions could be tested against all of
them, but thisis not recommended. The greedy algorithm wins 22 games (if the pit contentsin the
input are given in the order aslisted inthefileal 1 di f f. t xt) and the number of drawn gameis7. The
test cases should be selected according to the intended difficulty level of the task. The test set should
contain game instances, that are rotationally equivalent, because of the greedy algorithm might produce
different results for them.

Test results for all algorithms are summarized in atable contained in thefileal | di ff. t xt .

Game instances that are recommended for test have been indicated.

Time limit
Time limit should be set to reward time-efficient solutions. Thisis possible, because the running time
of the less efficient solution (recursive algorithm) is larger by an order of magnitude.

Library implementations

The game is implemented in a client server architecture for test runs. The contestant’s program owari
and the second player's program pl ayer 2 executed as separate processes, pl ayer 2 isthe server and
owari is the client. The programs communicate using inter-process communication that is implemented
by named pipes. This solution is safe and robust.

Only asmall library is needed on the client side to implement IPC. Communication is strongly
synchronized. Client can only communicate with the server by executing one of the three library
operations. The client always sends two integers, the opcode and the operand (possible dummy) and
waiting for receiving one integer as aresponse. The server islistening in aloop for incoming requests,
always waiting for two integers (sent by the client), then computes the response and sends it back. The

server program starts first and running in background. It is assumed that pl ayer 2 owned and executed

by a special user which is different from any contestant. It first creates a dummy output file and
changes its ownership and permission, so contestant's program can not modify the output file and it
will be there even if the client program terminates abnormally. Then opens two pipes, one for input and
one for output and listening in aloop for incoming requests on its input pipe.

In case of illegal operand (move) or at the end of the game, the answer sent back makes the client
terminate (abnormal or normal, respectively). In case of normal termination, the server closes the pipes
and write the output file, after client has been terminated. The client program opens the pipes with
appropriate modes at the first call of any of the library operations. If the client initiates its termination
or killed because time limit expired, the server terminates due to broken pipe error which is reported on
stderr. Therefore, the stderr of both programs should be redirected to files.

Contest-time version is implemented as a single program. The main reason is that | PC is not
supported on Windows by gcc/FreePascal. Moreover, it is not important to protect the second player's
program (the library) from the contestant program, and the single program version is more convenient

for the contestant.

Timo Tossavainen and Jyrki Nummenmaa

2.7 Mobiles (a competition task)

Problem

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows.
The areais divided into squares. The squares forman S Smatrix with the rows and columns numbered
from 0 to S- 1. Each square contains a base station. The number of active mobile phonesinside a
sguare can change because a phone is moved from a square to another or a phone is switched on or off.
At times, each base station reports the change in the number of active phones to the main base station
along with the row and the column of the matrix.

Write a program, which receives these reports and answers queries about the current total number

of active mobile phones in any rectangle-shaped area.

Input and output

The input is read from standard input as integers and the answers to the queries are written to standard
output as integers. The input is encoded as follows. Each input comes on a separate line, and consists

of one instruction integer and a number of parameter integers according to the following table.

Instruction | Parameters | Meaning

0 S Initialize the matrix sizeto S Scontaining all zeros. This
instruction is given only once and it will be the first
instruction.

1 XYA Add A to the number of active phones in table square (X, Y).
A may be positive or negative.

2 LBRT Query the current sum of numbers of active mobile phones
insquares (X,Y), whereLEXER BEYET

3 Terminate program. This instruction is given only once and
it will be the last instruction.

The values will always be in range, so there is no need to check them. In particular, if Ais
negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0,
e.g. for atable of size4” 4, wehave O£ X £3and0£ Y £ 3.

Y our program should not answer anything to lines with an instruction other than 2. If the
instruction is 2, then your program is expected to answer the query by writing the answer asa single
line containing a single integer to standard output.

Programming instructions

In the examples below, the integer | ast isthe last oneto be read from aline, and answer isthe
integer variable containing your answer.

If you program in C++ and usei ost r eans, you should use the following implementation for
reading standard input and writing to standard output:

ci n>>| ast ;
cout <<answer <<endl <<f | ush;

If you programin C or C++ and use scanf and printf, you should use the following

implementation for reading standard input and writing to standard output:

scanf ("%", &l ast);
printf("%\n",answer); fflush (stdout);

If you program in Pascal, you should use the following implementation of reading standard input and
writing to standard output:

Read(l ast); ... Readl n;
Witel n(answer);

Example

stdin stdout explanation

0 4 Initialize table sizeto 4° 4.

1123 Update table at (1,2) with +3.

20022 Query sumof rectangle O£ X £2, O£Y £ 2.
3 Answer the query.

1112 Update table at (1,1) with +2.

112-1 Updatetable at (1,2) with -1.

21123 Query sumofrectanglel£EX £2, 1£Y £ 3.

4 Answer the query.
3 Terminate program.

Constraints

Table size SS |1 1£SS£1024 1024

Cell value V at any time O£ VE 21 (=32767)

Update amount 2B EAE 281 (= 32767)

No of instructions in input 3 £ U £ 60002

ZICcir <

Maximum number of M= 2%
phones in the whole table

Out of the 20 inputs, 16 are such that the table sizeisat most 512" 512. NOTE: The web test facility

feeds your input file to your program’s standard input.

Description of the example solution

The solution is easiest to up with by considering the 1-dimensional casei.e., a one-dimensional table
(size N) with incremental updates and queries on sums of values on an interval. If the values on the
table are stored as such, computing the sum of an interval requires O(N) operations. A query of the sum
of values stored on a certain interval [X, Y] can aso be answered by computing the cumulative sums S
=[1, X-1] and M =1, Y] and then the answer A =M - S. The sums S and M can be stored in the table,
in which case the query can be answered in O(1). Maintaining the sums then causes the update to

require O(N) operations.

36 | Treeleved 3

7 Treelevel 2

3 11 Treelevel 1

1 3 5 7 Treelevel O
1 2 3 4 5 6 7 8 Raw datain table

1 2 3 4 5 6 7 8 Table index

Figure 3. A binary indexed tree with the update structure of the tree in solid lines and a dashed line presenting the path of a
guery of the sum of theinterval [1, 7] (7 + 11 + 7 = 25). Only the rows marked with the tree level need to be stored.

The binary indexed tree data structure (Figure 3) presented in [1] can support cumulative sum
computation and update in O(log N) and only takes the same space as the raw table. In the tree the
indices run from 1...N and each cell at index | contains the sum of an interval [I-2+1, 1] where K is

the number of trailing zeroes in the binary representation of the index of the cell. Thus the sum of an
interval can be computed with 2 O(log N) queries. The next cell in an update can be computed by
adding to the current index value its lowest 1 bit. Similarly in a query the next cell index can be
obtained by subtracting the lowest 1-bit. An update requires updating al the cells that contain the sum
of aninterval containing the cell, this can also be done in O(log N) operations. The computation of
sums can be made a little faster for small intervals by noting that the cumulative sum queries will
eventually hit the same cells and stop at the first common cell (the query ends up adding and
subtracting the same cell).

The solution to the 1-dimensional case can be generalized to any number of dimensions (in the
case of the IOl competition 2D, i.e., a NxN table). The trees are placed using the same logic asin the 1
dimensional case forming atree of trees. In this case in the tree-like structure the cell at coordinate
(X, Y) contains the sum of an area which is determined by the number of zeroes in the binary
representation of X in the X-direction and respectively the number of zeroesin the binary
representation of Y in the Y -direction. The structure can then support queries of a sum of values in the
rectangle[1, X]" [1, Y] intime O((log N)? (for an P-dimensional case O((log n)7)). The query for a
rectangular shape can be expressed in terms of these basic queries (e.g. 4 queriesin the 2 dimensiona
case: sum([L, R]" [B, T]) =sum([1, R]" [1, T]) - sum([1, L-1]" [1, T]) - s’um([1, R]" [1, B-1]) +
sum([1, L-1]" [1, B-1])). (See Figure 4 for examples.) The example solution also optimizes this for
small queries using the same method as the 1-dimensional case. The task also requires indexing to start

at 0 and the binary indexed tree data structure requires indexing that starts at 1.

Figure 4. Update and query pathsin the 2 dimensional solution from left to right: update (1,1), update (2,5),
sum([1,7]" [1,7]), sum([1,6]" [1,3]).

Examples are shown in Figure 5.

- EESRRE

Figure 5. lllustration of some sums of areas stored in different cells, the storing cell is black, the area stored (including the
cell) isdark gray.

It is also possible to order the area sums in other ways, in which case the indexing scheme changes.

Reference

[1] P. M. Fenwick, A new data structure for cumulative frequency tables, Software - Practice and
Experience 24, 3 (1994), 327-336, 1994.

Zoran Dzunic

2.8 Pavement (a back-up task)

Problem

The stone pavement around the Tampere Hall is made of small fixed size stone squares. The pavement
is damaged during the winter. The pavement is reconstructed using spare plates, which consist of four
or five such sguares connected together. The shapes of the spare plates are shown in Figure 6.

Figure 6. Shapes of the spare plates

It is possible that the damaged area cannot be exactly covered by these spare plates. (The plates may, of
course, be rotated or turned over.) If asquare in the damaged area is not covered by a spare plate, it
counts as a mistake. Also, if a spare plate has to be split by taking a square out of it in order to fit it in
the damaged area, each removed square counts as a mistake, too. Write a program to compute the
minimum possible number of mistakes in the reconstruction of a given damaged area of the pavement.

I nput

The input file nameis pavenent . i n. Thefirst line contains two integers M and N, M is the length of
the pavement, 1 = M = 100, and N is the width, 1 = N = 7. Each of the next M lines contains one string
consisting of N characters, where each character canbea ‘0’ (zero) or ‘1’ (one). Character ‘O’° means

that the respective square is damaged in the pavement, while ‘1’ means that corresponding squareisin

order. Consecutive linesin the input file correspond to consecutive columns in the rectangular matrix.

Output

The output file name ispavenent . out . Thefirst line contains one integer, the minimum possible

number of mistakes.

Example input and output

paverent.in pavenent . out

4 3 2
011
110
100
111

Solution

The solution uses dynamic programming with back tracking. Let T(N, K) denote the problem of
finding minimum mistakes when only rectangular N~ K is observed (K £ M). Knowing the solution for
T(N, K) means that we know the minimal number of mistakes for the given problem and one
configuration of plates on the pavement (N~ K) for which the number of mistakes is minimal. Knowing
the configuration of plates means that we know exactly which squares on the pavement are covered and
which are not. In the aim of solving the problem we can start with straightforward induction
hypothesis:

Hypothesis: We know the solution for T(N, K).

Isit enough to find out the solution for T(N, K+1) starting from the solution for T(N, K)?

(Obvioudly this induction follows the increase of K.)
K K+1 M

Base case is trivial. Minimal number of mistakes for T(N,1) is equal to number of ones (1) inthe
rectangular N™ 1. The only possible configuration isthat where no plate is put on a pavement (no one
fitsin N” 1). Next we have to deal induction step. We start from the solution for T(N, K) and try to add
some plates in order to achieve the solution for T(N, K+1). These additional plates should cover at least
one square in the K+1st column. The explanation for thisis following: Plates that do not satisfy
previous condition could have already been set on the pavement N° K. Since they were not, they do not
improve the solution and, thus, they are not necessary in finding a solution for T(N, K+1). Adding new
platesis not a unique task. In other words, we have to try al possible combinations of adding new

plates and test which one gives the solution for T(N, K+1). Plates that we add cover squaresin K-1st,
Kth and K+1st column, which means that only these 3 columns change in this step.

However, the solution obtained this way is not necessarily optimal. It may happen that there
exists a configuration for T(N, K) that doesn’t give the minimum solution for T(N, K), but that can be
extended (by adding new plates) to the minimal solution for T(N, K+1) (better that can be obtained
starting from the best solution for T(N, K)). This can be illustrated with the next example:

K K+1

N=3

Cross left submarine

The solution for T(3, 3) isobvious. We put one cross and the minimal number of mistakesis 0. If we
start from it, we cannot add more plates and the solution for T(N, K+1) would be 2 mistakes. But if we
start from the configuration of T(N, K), where one left submarine is put on the pavement, then we can
achieve a configuration for T(N, K+1) with 1 mistake by using another left submarine.

Even smaller example (3" 2+1) can be found. Moreover, there can be severa configurations that
achieve the minimum number for T(N, K).

Conclusion is that the solution for T(N, K) does not give sufficient information for finding a
solution for T(N, K+1), which means that we have to somehow extend (strengthen) the induction
hypothesis. Anideaisto observe the last two columns of rectangular N~ K, since only these columns
can change when we add a new plate.

To be more precise, each configuration for T(N, K) can be represented by rectangular matrix
Swxk Where, foral LEi £Nand 1 £] £ K, §[i,j] =1, if appropriate square is covered by that
configuration, or §[i,j] =0, if it is not covered. Again, only last two columns of Syxk can change by
extending the configuration (adding new plates) and one more column is added. We obtain matrix
Snx(K+1)-

As we have seen, we cannot suppose which configuration for T(N, K) can be extended in order to
achieve the solution for T(N, K+1). We can divide all configurations for T(N, K) into classes
(categories) by the last two columns of their S matrices, such that two configurations belong to the
same class if last two columns of their S matrices are identical. All the configurations from one class
can be extended in exactly the same way. We choose the best solution from each class for T(N, K) and
for each chosen solution, we add new plates from which we get the best solution for each class for T(N,
K+1).

The last two columns of matrix S represent one class. The combination of zeroes and onesin
these columnsiis called a combination of a class. Some combinations of zeroes and ones might not be
achieved by any configuration, i.e. they are combinations of non-existing classes and we say that they
are not possible. Knowing the solution for a combination means that we know minimal number of
mistakes that can be achieved for that combination (among all the configurations of the class). Finally,
we can formulate new induction hypothesss:

Hypothesis: We know the solutions for all possible combinations of T(N, K).

Base case can be solved by trying al configurations (combinations) for T(N, 2). We can aso
solve that in the following way. If we imagine an additional column before the first one (column zero
where it is not allowed to cover any square), then the only possible combination for T(N, 1) isthe one
where no plate is put on the pavement. The minimal number of mistakes for that combination is equal
to the number of zerosin the first column of the pavement. We can deal induction step easily, too. By
having the solutions for all combinations for T(N, K) we have to find solutions for all combinations for
T(N, K+1).

The solution for some combination for T(N, K+1) is equal to the minimum number of mistakes
that can be achieved by trying all possible extensions (additions) to all possible combinations for
T(N, K) that produce exactly that combination for T(N, K+1). We don’t need to prove this explicitly.
All configurations are implicitly tested through their classes (combinations). The execution of this step
could look like this: For each combination for T(N, K) we try to extend it in al possible ways by
adding new plates. For each extended combination for T(N, K+1) we notify if it was the first time it
appeared and check if we got better result than the current one.

| mplementation

I mplementation should follow induction, i.e. it should execute dynamic steps until the solution for T(N,
M) is reached. From the solution for one set of combinations (for T(N, K)) we make the solution for
another set of combinations (for T(N, K+1)). That means that we must have enough space to store
minimal number of mistakes for two sets of combinations at atime. Since constraints in the task are N
£7and M £ 100, minimum number of mistakes certainly cannot exceed 700, so 2 bytes are sufficient
for its storage. One combination is completely defined by the last two columns of matrix S that contain
2N elements of only two distinct values— 0 or 1. That implies that maxima number of combinations
for T(N, K) isat most 22N = 4" (N £ 7 implies 4" £ 16384). Now we see how the fact that N £ 7 is

used in the solution. It enables usage of partial backtracking and information storage inside a generd

dynamic programming solution.

However, there exists a modification of the solution in which the number of combinationsis
decreased! Up to now, we were solving T(N, K) alowing all possible configurations. We restrict
configurations in such away that it is not allowed to put a plate that covers only squaresin last two
columns (in other words, each plate must cover at least one square which is not placed in last two
columns). We can define problem P(N, K) as a problem of finding minimum mistakes when plates are
put on the pavement with such arestriction.

This modification is not obvious, but it is an improvement. We start from the configuration that
gives the solution and remove all plates that cover only squaresin the last two columns. Starting from
some configuration for P(N, K) we obtain configurations for P(N, K+1) by adding new plates, which
cover at least one square in K-1st column and no square in lower columns. Since we need a solution
for T(N, M), it is necessary to find a connection between that problem and problem P. If we imagine
one additional column (M+1st) after last one, where it is forbidden to cover squares, then the solution
for T(N, M) is equal to the solution for P(N, M+1).

Each combination (class) for P(N, K) is represented by the last two columns of matrix S. If we
carefully watch available plates, it is not difficult to check that there doesn’t exist a plate that would
cover asguare in Kth column and not cover a square in K-1st column in asingle row in any
configuration for P(N, K). Thus, there are 3 possibilities for one row : 00, 10, 11. So, we can bound the
total number of combinations for P(N, K) by 3! (Among these 3" combinations for last two columns
exist combinations that are not possible, for example one with all ones in last two columns. But, any
further analysis would be too complicated and it is hard to believe that further improvement can be
obtained in any reasonably simple way.)

As mentioned, we need to store the minimal number of mistakes for two sets of combinations. In
other words, we need two arrays of 3" 2 bytes elementsN £7 b 3£ 2187. These two arrays occupy
8748 bytesin total. It is necessary to establish bijection between combinations and array indices. That
can be done in the following way. Each row of the last two columns of matrix S can be coded with
three values 0,1 and 2. For example: 00® 0, 10® 1, 11® 2. When all codes (for each row) are put one
to another in aline they form a number in radix 3. Trandated to radix 10, it represents index of an array
element that refersto that combination. It remains to make a procedure for coding a combination with a
number and vice versa, a procedure for decoding a combination from a given number (i.e. to
reconstruct the last two columns of matrix S).

Consider an example:

i 1 1 1 C 1 C
1 1 1 1 1

® ! ®
T NETERE e

9 C 1 C 1 9

configuration S matrix last two columns

10®@ 1, 11® 2, 11® 2, 10® 1
(1221)3 = 1+2* 3+2% 9+1* 27 = 52

The code number (index) of the given combination is 52.

Initialisation consists of defining a solution for the base case. Denote XX an array of minimum
number of mistakes for the combinations of problem P(N, K). Values of array X" are X*(i), where 0 £ i
£ 3"-1. For those combinations that are not possible we assign some specific value, for example X(i)
= -1 or X*(i) = MAXINT. Base case can be X*(0) = total number of 0's in the first column, X*(i) =
MAXINT for 1£i £ 3V-1.

Next phase that the program should execute is repeating the computation of values for X** from
the known values for X when K = 1, 2, ..., M in that order. Two arrays are sufficient since we need
only final result. Evaluation of X*** may consist of the following steps:

1. Initially, we set X"*}(i) = MAXINT,i=0,1, ..., 3"-1.
2. Start from each X"(i).
3. Reconstruct (decode) last two columns of S matrix (K-1st and Kth) from index i.
4. Tryto add new plates, in all possible ways that cover at least one square in K-1st column
and no square in lower columns.
For each possible extension we compute index j from Kth and K+1st column.
If it was the first time that we obtained that combination or we got lower value for
X**1(j), we change it.
Steps 3 and 5 can be implemented as separate procedures. In step 6 it’s enough to check whether we
got lower value for X"**(j) or not, since we assigned value MAXINT for non-possible combinations.
Step 4 isthe most complicated. In order to clarify its implementation, we introduce matrices F, ..., Fy
of dimension 3" 3, one per each rotation of available plates (black fields are 1's in matrices and white

are0's):

Fs

o
"

Also, we introduce matrix Gy~ 3 that represents 3 consecutive columns of matrix S (K-1st, Kth

Fo F Fo

and K+1st) in each step for K. First two columns of matrix G are obtained in step 3. Third one is filled
with zeroes in the beginning. Then, step 4 is executed by “sticking” matrices F over matrix G. In that
process black squares (1) of matrix F are not allowed to cover black squares (1) of matrix G and to fall
“out of bounds’ of matrix G. (Thisisin accordance with the conditions of the task — that plates cannot
overlap and fall out of the pavement.) Specialy, for K = 1 no plate can be added, while for K = M
plates must not cover squaresin M+1st column. Matrices F have property that the leftmost square of a
plate liesin the first column, and the top square lies in the first row.

In order to try al possible additions of new plates we can implement the following backtracking
procedure: Consider the first column of matrix G and find its upper most non-covered square (0).
Then, we put into matrix G each plate F4, ..., Fg such that its upper most from all most left squares
cover exactly this one. For each plate that fits correctly, as well for the case when we add nothing, we
find the next non-covered square in the first column of matrix G and, if it exists, recursively repeat the
procedure. Steps 5 and 6 are contained in those recursive calls that don’'t have further calls (they are of
the greatest depth). At that time 2nd and 3rd column of matrix G are used in step 5 (as Kth and K+1st
column).

Finally, the solution for the task can be computed in the following way: Minimum number of
mistakes = min{ X"*(i)|i=0, 1, ..., 3"-1}.

Complexity

Part of the program that determines the complexity is surely the part which evaluates the arrays X?, ...,
XM*1 It consists of M = O(M) repetitions of computing array X<** from known array X¥. Each
computation of array X ** needs the following. We start from each X(i), which means 3" = O(3")
starting positions (it’s also the number of executions of step 2). For each starting position we try all

possible extensions. Since we try to put F4, ..., Fg or nothing (10 possihilities) for each non-covered
square in the first column of matrix G, and number of 0's can be at most N, this need O(10™)
operations. Checking an improvement of each obtained value X"**(j) needs O(const) time.

Therefore, the total time complexity of the program is O(M* 3"+ 10™) = O(M*30"). Although 30" could
be very large even for N = 7, constant omitted in this estimation is pretty small (much less than 1).

Timo Poranen and Jyrki Nummenmaa

2.9 Score (a competition task)

Problem

Score is a board game for two players who move the same token from position to position on the board.
The board has N positions, numbered 1 through N, and a set of arrows. Each arrow goes from one
position to another. Each position is owned by one player or the other, whom we call the owner of that
position. In addition, each position has a positive value. All values are different. Position 1 isthe
starting position. Initially, both players have a score O.

The game is played as follows. We denote the current token position at the beginning of the
move by C. At the beginning of the game, C is position 1. A move of the game consists of the
following operations:

1. If thevalue of Cislarger than the current score of the owner of C, then the value of C
becomes the new score for the owner of C. Otherwise, the score of the owner of C
remains the same. The score of the other player does not change in either case.

2. After this, the owner of C chooses one of the arrows out of the current token position and
the destination of the arrow becomes the new current token position. Notice that a player
may make several consecutive moves.

The game ends after the token is returned to the starting position. The winner is the player with the
higher score when the game ends.

The arrows are always arranged so that the following conditions hold:

It is always possible to choose an arrow out of the current token position.
Each position P is reachable from the starting position, that is, there is a sequence of
arrows from the starting position to P.
The game is guaranteed to end after a finite number of moves.
Write a program, which plays this game and wins. All the games your program is made to play in
evaluation are such that it is possible to win, whether or not you move first. The opponent in evaluation

plays optimally, that is, once given a chance, it will win the game and your program will lose.

Input and output

Y our program reads input from standard input and writes output to standard output. Y our program is
Player 1 and the opponent is Player 2. When your program is started, it should first read the following
input from standard input.

Thefirst line contains one integer: the number of positionsN, 1 £ N £ 1000. The following N
lines each contain N integers with information about the arrows. If there is an arrow from position i to
position j, then the jth number on the ith line of these N lines is 1, otherwise it is 0.

The next line contains N integers: the owners of the positions. If the position i is owned by Player
1 (you), then theith integer is 1, otherwise the ith integer is 2.

The next line contains N integers, the values of the positions. If the ith integer is |, then the value of
positioni isj. For the values | of positionsit holdsthat 1 £ j £ N and all values are different.
After this, the game starts with the current token position being 1. Y our program should play as
follows, and exit when the token returns to position 1:
If it is your program’ s turn to move, then your program should write the number of the
next position P, 1 £ P £ N, to standard output
If it is your program’ s opponent’s turn to move, then your program should read the
number of the next position P, 1 £ P £ N, from standard input.

Consider the following example. The board is represented in Figure 7. The positions marked with
acircle belong to Player 1 and the ones marked with a square belong to Player 2. Each position hasits
value drawn in the square or circle, and the positions number next to the square or circle. A game being

played is represented below.

Figure 7. A sample board

stdin stdout explanation

4 N
0100 Information on arrows from position 1
0011 Information on arrows from position 2
0001 Information on arrows from position 3
1000 Information on arrows from position 4
1122 Owners of positions
1342 Values of positions
2 Player 1 moves.
4 Player 1 moves.
1 Player 2 moves to starting position — game ends.

After the game, Player 1 has score 3 and Player 2 has score 2. Player 1 wins.

Programming instructions

In the examples below, t ar get istheinteger variable for the position. If you program in C++ and use
iostreams, you should use the following implementation for reading standard input and writing to

standard output:

ci n>>t ar get ;
cout <<t ar get <<end| <<f | ush;

If you programin C or C++ and use scanf and printf, you should use the following implementation for
reading standard input and writing to standard output:

scanf ("%", &target);
printf("%l\n",target); fflush (stdout);

If you program in Pascal, you should use the following implementation of reading standard input and
writing to standard output:

Readl n(target);
Witeln(target);

Tools

You are given aprogram (scor e2 on Linux, scor e2. exe on Windows). The program reads the
description of the game from file scor e. i n in the format described on the previous page. The program
will write this information to standard output in the same format. This output can be used as an input
for your program for test purposes. After that, the program plays with a random strategy, reading your

programs moves from standard input and writing its own moves to standard output.

Scoring and evaluation

For atest caseg, if you win the game, you get full points, otherwise you get 0 points. In the evauation,
your program s first made to play against another program with the time limit 1 second higher than the
task time limit. Y our programs input and output are recorded. Then, your program is executed a second
time with input directed from afile and the official evaluation execution time is recorded. Y our

program must produce the same output as in the first execution.

Solution

Testing afinite state process for certain types of properties can be thought as an MC game. The winner
of the MC game indicates if the property holds for a process [1]. The game is modified for 10l from
cycle connected MC games, which is special class of arbitrary MC games. The cycle connectedness
means that al cyclesin each strongly connected component of the game graph have at least one
common vertex [2].
The optimal playing strategy for game can be constructed in linear time by using depth-first
search (shortly dfs) based algorithm. See [2] for other methods of solving optimal playing strategy.
The gameis arranged in such away, that it is always possible to choose an arrow and if the game
is played sufficiently long, the starting position will again become the current position. This means that
each cycle of the game graph have at least one common vertex, the start position. The playing strategy
is dways to choose a path from current position to startposition, where you have a position with largest
possible value than your opponent and if thisis not possible, to choose a path where your opponent has
the lowest possible value.
To find for each position the best possible arrow to play, you can use a combination of dfswith
following (recursive) rulesto choose an arrow:
1. If you can choose a path/paths where you have larger score than your opponent, then
choose that path where your score is the largest of them.
2. If your opponent has larger scores in all outgoing paths, then choose the path where your

opponent has least possible score.

Greedy algorithms

One can play the game by one step look-ahead greedy strategy. The player always chooses an arrow to
his’her own position with largest possible score and if none of the arrows leads to players own position,
then to choose an arrow to position where the opponent has least possible score. This one step look-
ahead strategy can be made more efficient by searching more deeply the game graph. But only searhing
all paths until the start position is reached guarantees that the best playing strategy is found. The
probability of winning a game by doing only random movesiis low.

Refer ences

[1] C. Stirling. Bismulation, model checking and other games. Notes for Mathfit Instructional Meeting
on Games and Computation, University of Edinburgh, June 23-23, 1997.
http://www.dcs.ed.ac.uk/home/cps/mathfit.ps

[2] T. Poranen and Jyrki Nummenmaa, Graph-theoretical algorithms for MC-games. Unpublished
manuscript. Department of Computer and Information Sciences, University of Tampere, Finland, 2001.

Timo Poranen

2.10 Tictac (a demo task)

Problem

Tic-tac isatraditional two-player game. The game is played on a board, which has a 3x3 matrix (three
rows and three columns). One of the players (player X) uses markers ‘X’ and the other (player 0) uses
markers ‘0. Initially, all cells of the matrix are empty. When the game is played, the players take turns
placing their markers in empty cells of the matrix. Player X starts. A player wins the game, if he/she
getsthree of hissher markers on the same row or same column or a diagonal of the matrix. The game
continues until either player wins or all cells contain a marker. If neither player wins, then it isadraw.
The game has the property that if both players play optimally to avoid loosing, then the game will be a
draw.

You are to write a program, which plays this game as player X aiming to either win or draw. The
opponent plays optimally to win, that is, once given a chance, it will win the game and your program

will loose.

Input and output

Y our program reads input from standard input and writes output to standard output. When your
program starts, it should first write the first move to standard output. Then it should read player O's
move from standard input.

The positions of the game board are numbered from 1 to 9 as in Figure 8 so that the top left
corner is number 1 and the bottom right corner is number 9. For example, if your move is 5, you place
amarker in the middle of the board.

1 2 3
4 5 6
7 8 9

Figure 8. Thetic-tac board

Example

Consider the following example. The board after the first move is given in Figure 9 and the end

position of the game in which player O has won is given in Figure 10.

stdin stdout explanation

1 Player X places a marker in position 1.
2 Player O places a marker position 2.

4 Player X places a marker in position 4.
7 Player O places a marker position 7.

6 Player X places a marker in position 6.
5 Player O places a marker position 5.

8 Player X places a marker in position 8.
3 Player O places a marker position 3.

Player 0 has three pieces in a diagonal and wins the game and playing stops.

X
Figure 9. A sample board after the first move
X O O]
X @) X
O] X

Figure 10. A sample board after the game

Programming instructions

In what follows we assume that target is an integer variable used for reading or writing the move.
If you program in C++ and use streams, you should implement reading standard input and writing

standard output as follows:

ci n>>t ar get ;
cout <<t ar get <<endl| <<f | ush;

If you use fgets and printf in C or C++, you should implement reading standard input and writing

standard output as follows:

fgets(target, stdin);
printf(target); fflush(stdout);

If you program in Pascal, you should implement reading standard input and writing standard output as

follows:

ReadLn(t arget);
WitelLn(target);

Scoring

If your program plays according to the rules and wins or it is a draw, you get full points, otherwise you
get 0 points.

Sergey Melnik and TeroKarras

2.11 Twofive (a competition task)

Problem

The secret messages between Santa Claus and his little helpers are usually encoded in the 25-language.
The 25-aphabet is the same as the Latin alphabet with one exception - the letter 'Z' is absent, i.e. the
25-alphabet contains 25 Latin letters from 'A' through "Y' in the same order as the Latin alphabet. Each
word in the 25-language consists of exactly 25 different letters. A word can be writtenina5” 5table
filling the rows first; for example, the word ADJPTBEKQUCGLRVFINSWHMOXY will be written as

follows:

ADJPT
B EKQU
CGLRYV
FI1 NSW
HMOXY

A valid word in the 25-language has its letters in each row as well as in each column written in
ascending order. Thus, the word ADJPTBEKQUCGLRVFINSWHMOXY isavalid word, in contrast
to the word ADJPTBEGQUCKLRVFINSWHMOXY (the ascending order is violated in the second
column, and in the third column, too).

Santa Claus has a lexicon. His lexicon is the list of all valid 25-language words in ascending
order (Iexicographically) along with their ordinal numbers starting from 1. For example, in the lexicon
ABCDEFGHIJKLMNOPQRSTUVWXY isthe word number 1 and
ABCDEFGHIJKLMNOPQRSUTVWXY isthe word number 2. In word number 2, U and T are
interchanged from their order in word number 1.

Unfortunately, this lexicon is huge. Write a program that determines the ordinal number of an
arbitrary given word, and also the word corresponding to a given ordinal number. There are no more

than 23! words in the lexicon.

I nput

The input file is named t wof i ve. i n and consists of two lines. The first line contains a string with one
character: a'w' or an'N'. If the first line contains a'w', then the second line contains a valid 25-
language word, that is, a string with 25 characters. If the first line contains an 'N', then the second line

contains the ordinal number of an existing 25-language word.

Output

The output file isnamed t wof i ve. out and consists of oneline. If the second line of the input file
contains a 25-language word, then the line of the output file contains the ordinal number of that word.
If the second line of the input file contains a number, then the line of the output file contains the 25-

language word with that ordinal number.

Example inputs and outputs

twofive.in t wofi ve. out

W 2
ABCDEFGHI J KLMNOPQRSUTWAKY

twofive.in t wofi ve. out
g ABCDEFGHI J KLIMNOPQRSUTVWKY
Solution

The solution is based on a function numconts, which, given an arbitrary set of letters having fixed
positions, will compute the number of possible ways to legally place all the remaining letters. The
function will try to position the letters in the edges of a shape of a Y oung tableau (the same shape that
is used for the problem depot).

If all the letters have been placed, then there is exactly one way to continue: do nothing. So, for a
full state, numconts initializes the table snum[states-1] to 1. Then, it will start to fill the table using the
function calcstate.

Calcstate returns the number of possible ways to choose positions for the remaining letters, given

the shape of the positioning of the earlier letters and the fixed set. It tries to place the next letter to all
valid positions, and sums the values obtained by calling itself recursively for the new shapes. The
intermediate results are stored in the table snum so that they don't have to be recalculated.

Solving the actual problem using the numconts function is fairly easy. Let's say we have to
calculate the number of aword. We keep up a value corresponding to the number of the alphabeticaly
first word we would be able to generate with our current the fixed set. We will fix all the letters one by
one, starting from the most significant one. A letter is fixed by first setting it to A, and then
incrementing it until the desired one is reached. Each time it is increased, numconts is used to calculate
the number of words that were skipped in the operation, and the current value is updated accordingly.
When all the letters have been fixed, we have the correct solution.

Doing things the other way around works almost the same way. We again fix the letters one by
one, this time incrementing them until the current value exceeds the desired value. When this
happends, we take a step back, and move to the next letter. When we're finished, the two values have
become equal, and we have the correct word.

Jyrki Nummenmaa, Timo Poranen and Markku Siermala

2.12 Practice competition tasks

'Day-0" was used to practice competition with tasks Notes, Rocket, and Storage.

Notes problem

Suppose that there exist bank notes with values 1, 5, 10, 50, 250, and 1000. A bank transfers money in
cash between branches. The money is packed automatically in branches by a machine. To save space, a
minimum number of notes is desirable. Y ou are to write a program which, given the sum of money to
be transferred, computes the numbers of different notes in such away that a minimum total number of
notes is needed.

Notes — Input and output

Y our program reads input from standard input and writes output to standard output. When your
program starts, it reads a non-negative integer V from standard input. If V = 0, your program
terminates.

If V> 0, your program writes to standard output, on asingle line, integers T, Q, F, E, I, and O,
where T is the amount of notes with value 1000, Q with value 250, F with value 50, E with value 10, |
withvalue5 and O withvalue 1, and T, Q, F, E, I, and O are chosen in such a way that a minimum
total number of notesis needed. All integer values on the line are separated with a single space.

Notes— Example

stdin stdout explanation

2 The amount of money is 2.
000002 The answer (two notes with value 1).

314 The amount of money is 314.
011104 The answer (1*250 + 1*50 + 1*10 + 4*1).

0 A request for termination.

Notes — Programming instructions

In what follows we assume that request is an integer variable used for input and t, g, f, e, i, and o are
integer variables containing the answer.

If you program in C++ and use streams, you should implement reading standard input and
writing standard output as follows:

ci n>>request;
cout <<t <<" "<<g<<" "< << M <e<<" " << <<" " <<o<<endl| <<f | ush;

If you do not want to output everything in one statement, when you output o, do:

cout <<o<<end| <<f| ush;
If youusefgets andprintf inC or C++, you should implement reading standard input and writing
standard output as follows:

scanf ("9%", &request);
printf("%l % % % % %d\n",t,q,f,e,i,0); fflush(stdout);

If you do not want to output everything in one statement, when you output o, do:
printf("%l\n",0); fflush(stdout);

If you program in Pascal, you should implement reading standard input and writing standard output as

follows:

readl n(target);
witeln(t,” ',q," ", f," ",e " ",i," ',0);
or, if you do not want to output everything in one statement, when you output o, do:

witeln(o);

Notes — Constraints

For the input values V it holds that 0 =V < 100000. Y our program will be given at most 100000

positive values of V in one execution.

Notes— Tools

You are given aprogram (asknot es for Linux, asknot es. exe for Windows), which will randomly
write to standard output 1-5 inputs for your program, and after each input it will try to read from
standard input an answer as produced by your program. At the end, the program will write aline with
one integer O to standard output. The program will produce afile asknot es. r pt , which reportsif the

answers it got were correct.

Rocket problem

There are N cities, identified with distinct integers from 1 to N. Y ou have arocket for transporting
people between the cities. Each time you take a rocket with people from one city to some other city,
you earn a fixed sum of money. For flying the rocket, you need fuel. In each city K there are Ck fuel
containers, where1 = K =N and 0 = Cx = 100.

The rocket fuel of one container is enough to lift the rocket once out of the atmosphere, and the
fuel is then completely exhausted, after which the rocket can be guided to any of the cities. Y ou will
make flights until you land in a city in which there are no fuel containers. Y ou start with your rocket
from your rocket shelter outside of any town, where you have 1 fuel container to initially get to one of
the cities. Y ou will not get other fuel than that and the fuel aready in the containersin cities. Given the
number of cities and the number of fuel containers in each city, you are to find the maximum number
of trips that can be made from one city to some other city.

You are given alibrary, which contains a procedure/functioni s_r ocket _ok. Given the sum of
the numbers of containersin all cities (sum), the largest - not necessarily unique - number of containers
in any city (I ar gest) and your answer to the maximum number of flights (answer), i s_r ocket _ok

assigns 1 to variable ok, if your answer is correct, and O otherwise.

C/C++ declaration:

void is_rocket_ok(const Iong sum const |ong | argest,
const |ong answer, int* ok);

Pascal declaration:

procedure is_rocket_ok(const sum: longint; const |largest : longint;
const answer : longint; var ok : integer);

Rocket — I nput

The input file names arer ocket . i nl, where is one of characters 1, 2, 3, 4, or 5. Thefirst line of the
input file contains one integer: the number of cities N, 1 = N = 100000. The second line contains N
integers. the values Cy, C,, ...,Cy. For each Cx we have 1 = K = N and 0 = Cx =100.

Rocket — Output

Thefirst line of the output file contains the string
#FI LE rocket

where | isthe number of the input file respective to this output file. The second line contains one
integer M: the maximum possible number of flights from a city to some other city.

Rocket — Example inputs and outputs

To make a difference between the example and real inputs, we use input number O here.

rocket . i n0 An output file to be submitted
3 #FI LE rocket O
56 20 23

Stor age problem

Thereis a storage building, which stores containers. Each container weighs either 1,2, or 3 tons. During
the day, trucks leave new containers in front of the storage building. In the evening the containers are
put in piles and the piles are lifted in the building. The piles are formed according to the two following
rules. First, for any two piles P; and P, it holds that P, weighs at most 3 tons more than P,. Second,
for any two containers C; and Cy, it holds that if C; ison top of C, in a pile, then C; does not weigh
more than C,. Y ou are to write a program which, given the weights of the containers, computes how
containers are to be piled up.

Storage — I nput

The input file name in st or age. i n. The first line contains one integer N: the number of containersto
be piled up, 2 =N = 100000. The second line contains one integer P: the number of pilesto be formed,
1 =P and 2P = N. The third line contains N integers. the weights of the N containersin tons.

Storage - Output

The output file name is st or age. out . The file contains P lines, each describing one pile. A line
describing a pile is formed as follows. Suppose that there are K containers in a pile. Then the respective
line contains K integers: the weights of the containersin the pile in the order from bottom to top in the
pile. You must put containersin all piles.

Storage — Example input and output

storage.in st or age. out

NN W
e N

6
3
322111

Samuli Laineand Tero Karras

3. Nokia Coder Competition

In addition to the actual 10l event, a game programming side competition was held for the first timein
the history of 10I. The task was to design and implement an artificial intelligence player for a board
game called Nokia Chainbox. The competition was held a couple of months before the event, and it
was open for all students that were at least 18 years old — not only the 101 contestants. The submitted
player programs were evaluated by letting them play against each other in around-robin style
tournament, and the ten best programmers won a Nokia mobile phone. In addition, four of them were
invited in Finland to see what the event and the country were like.

The Rules of the Game

Nokia Chainbox is atwo-player game that is played on a 10" 10 grid. Every square may contain a black
or white stone or it may be empty. Initially there are four stones on the board (see Figure 11). One
player has black stones and the other has white ones. The player with the black stones starts the game.
Each player places alternately a stone of his’/her own color in any empty square. This continues until
the board becomes full or either player forms abox. A box isa 2" 2 shape of stones of the same color
(see Figure 12). If aplayer succeeds in forming a box, he/she wins the game.

If neither player succeeds in forming a box in 96 moves, no more stones can be placed. When
that happens, each player hasto form achain. A chain is a sequence of adjacent squares occupied by
the player’ s stones (see Figure 13), and the chain may not pass through a square more than once. Two
squares are considered adjacent if they share a common edge or corner point. The player whose chain

passes through more stones, wins the game. If the chains have equal length, the game is a draw.

Figure 11. The initial layout Figure 12. Black has formed a box

Figure 13. Black has longer chain

The competition

The contestants were to come up with a strategy for playing the game, and to implement a player
program according to it. The program was to be written in Java language as a set of classes that
implemented a specified interface. The interface was very simple. The games were hosted by a separate
framework that asked the players to make the moves. The time to decide a move or a chain was limited

to ten seconds and if it was exceeded, the player lost the game.

A graphical framework was provided for the contestants. The framework enabled a contestant to
play against a player program, or to run a game between two player programs. This made it possible to
see how the program performed and if it conformed to the given interface properly. The framework
also provided a facility to check the programs for actions that were forbidden in technical rules, such as
writing files or using threads. It was also possible to store the played games and to do batch runs. In
addition, two example programs were given — a very simple one with source code and a little smarter
one without source code.

The contestants had to register for the competition using a WWW form. They were given a five-
letter registration code for identification, and they had to submit the source code of their program via e-
mail. The submissions were received and checked automatically, and the contestant was notified about
the success or failure of the submission. After the submission was closed, all the programs were
compiled and tested against the simple computer player.

The tournament was run using many computers in parallel so that a main computer controlled
three other computers running the games. In each round of the tournament, every program played twice
against every other one as both black and white. The programs were given two points for victory, and
one point for draw.

In total, there were about 750 registered contestants, of which 40 submitted a solution. One round
of the tournament, having about 1600 games, took approximately 10 hoursto run. After one round the
differences in programs’ scores were too small, so another was needed. As the competition was a part
of the 10I, a chance to watch some of the games played in the tournament was included in the
programme of the event.

Figure 14. Game visualization at 10l

About the game

The rules of the game were originally developed based on asimple 5° 5 version found from a book of
games. The book considered the game to be very simple and mathematically uninteresting. However,
after the board size was increased and the initial position added, the game proved to be quite
challenging.

There are both tactical and strategic aspects in the game. It is often possible to force the other
player’s moves by threatening to form a box. It is however hard to create multiple smultaneous threats
so that the opponent cannot avoid losing the game.

In contrast, a clever strategy may easily ruin opponent’s hopes of winning. There are many ways
to arrange the game so that opponent’ s chain cannot be long enough. For example, if a player succeeds
in splitting the board in two parts with her stones, the opponent’s chain cannot contain stones from both
sides. Thisis usually the easiest way for a human player to outwit a player program. In addition,
keeping opponent’s stones loosely connected limits her ways of forming a chain.

Thereis also another tactical aspect at the very end of the game. When there are only a small
number of empty squares left, it is often possible to calculate the exact value of each square for both
players. In this phase, it is possible to play in an optimal way.

Appendix A — Authors

Isto Aho

Hal Burch
Zoran Dzunic

Gyula Horvath

TeroKarras

JanneKujala

Samuli Laine

Erkki Makinen

Sergey Melnik

Jyrki Nummenmaa

Timo Poranen

Timo Tossavainen

Dept. of Computer and Information Sciences
P.O. Box 607

FIN-33014 University of Tampere, Finland
tyisash@cs.utafi

hburch+@cs.cmu.edu
dzzoki@yahoo.com

Dept. of Informatics
University of Szeged
P.O. Box 652

H-6720 Szeged, Hungary
horvath@inf.u-szeged.hu

tkarras@cc.hut.fi

Dept. of Mathematical Information Technology
University of Jyvaskyla

P.O. Box 35

FIN-40351 Jyvéskyld, Finland

jvk@iki.fi

samuli.laine@saunal ahti.fi

Dept. of Computer and Information Sciences
P.O. Box 607

FIN-33014 University of Tampere, Finland
em@cs.utafi

cm@progmeistars.lv

Dept. of Computer and Information Sciences
P.O. Box 607

FIN-33014 University of Tampere, Finland
jyrki@cs.utafi

Dept. of Computer and Information Sciences
P.O. Box 607

FIN-33014 University of Tampere, Finland
tp@cs.utafi

Dept. of Computer and Information Sciences
P.O. Box 607

FIN-33014 University of Tampere, Finland
tt@cs.utafi

Tom Verhoeff Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands
Tom.Verhoeff @acm.org (or wstomv@win.tue.nl)

Appendix B — Competition material

Bincode - example solution (Janne Kujala)

/*

PROG bi ncode
LANG C

*/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>
#i ncl ude <string. h>

int N
unsi gned char *vec;

/* Read the input colum in vec[O..N 1] */
voi d readi nput (FILE *f)

{
int i, b;
assert(f !'= NULL);
assert(fscanf (f, "%l", &) == 1);

vec = mall oc(N)
assert(vec != NULL);
for (i =0; i <N i++)
{
assert(fscanf (f, "%l", &) == 1);
vec[i] = b;

}
i nt mai n(voi d)
t
int i, k;
i nt *next;

int zeros = 0, ones = 0O;

FILE *f = fopen("bincode.in", "r");
readi nput (f);
fcl ose(f);

next = malloc(sizeof(int) * N)
assert (next !'= NULL);

/* Count the number of zeroes */
for (i =0; I <N i++)
zeros += (vec[i] == 0);

/* Indexes to the first '1" and '0" in the first colum */

ones = zer os;
zeros = 0O;

/* Create the array next */
for (i =0; i <N i++)
if (vec[i] == 0)
next[zeros++] =i
el se
next[ones++] = i;

/* Traverse next to wite out the solution */

f = fopen("bincode.out", "w');
[*fprintf(f, "%\n", N);*/
k = 0;

for (i =0, i <N i+

k = next[K];
fprintf(f, "%l ", vec[k]);

}
fprintf(f, "\n");
fcl ose(f);

return O;

Boxes - example solution (Isto Aho)

/1 boxes. cpp

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <string>

#define max(a,b) ((a) > (b) ? (a) : (b))
#define mn(a,b) ((a) > (b) ? (b) : (a))

const |l ong NR BOXES = 17;// Nunmber of the boxes (maximun)

| ong box_s[NR_BOXES] ; /1 Sizes of the boxes.

const long NR SLOTS = 3; // Qtherw se sanme as NR SLEI GHS, but one
/! additional for the itenms that are not assigned - slot zero

const long NR SLEIGHS = 2;// Nunber of the sleighs.

const char *STR BOXES = "boxes.in";

i nt
mai n(int argc, char *argv[])

{
long i; // | oop index.
ifstreaminput; ostream *output = &cout;
if (argc !'= 2) {
i nput . open(STR_BOXES) ;
} else {
string ifile_name = argv[1l]; ifile_nane += ".in";
i nput.open(ifile_name.data());
string ofile_name = argv[1]; ofile_name += ".out"
out put = new of strean(ofile_nane.data());
}

assert (i nput);
if (Toutput || !*output) {

cerr << "Problens with opening the output file.\n"; exit(1);

long n; input >> n; // Nunber of nagic boxes.
long b; input >> b; // Common size of the sleighs.

for (i=0; i<n; i++) input >> box_s[i];

i nput. cl ose();
for (i=n; i<NR_BOXES; i++) box_s[i] = 0;

| ong sol uti on[NR_BOXES] ;
for (i=0; i<NR BOXES; i++) solution[i] = 0;
/1 No box is assigned at the begi nning (0O=not assigned,
/1 1=old sleigh, 2=new sl eigh).
| ong best _sol [NR_BOXES] ;
for (i=0; i<NR BOXES; i++) best_sol[i] = 0;
/1 And hence the best solution is that no box is assigned
/1 (at this noment).
[ong wei ght s[NR_SLOTS] ;
for (i=0; i<NR_SLOTS; i++) weights[i] = O;
/1 To check, whether we have gone above b or not.
| ong best_value = 0; |ong val ue;

long j = n - 1;
/1 j is index to digit of the "nunber" formed by the "sol ution”
while (j >= 0) {
val ue = 0;
for (i=1; i<NR_SLOTS; i++) {
/1 Calculate the value - use the weights.
if (weights[i] <= b) value += weights[i];
else value += max(0, 2 * b - weights[i]);
}
if (value > best_value) { // Record the best solution.
best val ue = val ue;
for (i=0; i<NR BOXES; i++) {best_sol[i] = solution[i];}

}
/! Add one to our "special nunber."

j =n-1; // W start fromthe right-nost digit.
while (solution[j] == NRSLEIGIS && | > -1)
j--; /1l 1If this gives i = -1, we go out.

if (j >-1) {
/1 j is the first digit that is not maximum (i.e. 2).
long w = box_s[j]; // wis tenp. box size.
wei ghts[solution[j]] -=w,
solution[j]++;
wei ghts[solution[j]] += w,
}

for (i =) +1; i <n; i++) { // Oher digits are set to O.

wei ghts[solution[i]] -= box_s[i];
solution[i] = O;
}

} // End of the enuneration | oop

*out put << best_value << "\n";
for (i=0; i<n; i++) {

*out put << box_s[i] << << best_sol[i] << "\n";
}
*out put << "\n";

if (output != &cout) del ete output;

Break - example solution (Hal Burch)

#def i ne NAME " Dbr eak"
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>
#def i ne MAXF 100000
#defi ne MAXP 150000

i nt node[2* MAXP] ;
i nt next[2*MAXP] ;
int first_edge[MAXF];

int nune, nunv;

i nt par[MAXF] ;

i nt edge[MAXF] ;
i nt mar k[MAXF] ;
i nt vis[MAXF] ;

i nt dept h] MAXF] ;

voi d

mark_l oop(int loc, int anc) {
int p;
int np;
int mind = depth[anc];

for (p = loc; depth[p] > mnd; p = par[p])
mar k[p] = 1;

anc = p;

for (p =1loc; p!=anc; p =np) {
np = par[p];
par[p] = anc;

voi d
dfs(int loc, int dep) {

int |v;

i nt nnode;

vis[loc] = 1;
dept h[1 oc] = dep;
for (v = first_edge[loc]; Iv >=0; Iv = next[Iv]) {
if (v == edge[loc]) continue;
nnode = node[lV];
if (!vis[nnode]) {
par [nnode] = | oc;
edge[nnode] = |lv N 0Ox1;
df s(nnode, dep+l);
conti nue;

}

mar k_| oop(l oc, nnode);

i nt
mai n(int argc, char **argv)

{

FILE *fin, *fout;

int Iv;

int 11, 12;

int bcnt;

if (argc >= 2) {
fin = fopen(argv[1], "r");
fout = stdout;

} else {
fin = fopen(NAME ".in", "r");
fout = fopen(NAME ".out", "wW');

}

assert(fin);
assert(fout);
fscanf (fin, "% %", &unv, & v);
for (11 =0; Il < nunmv; |1++) first_edge[ll] = -1
nume = O;
while (lv-- > 0) {
fscanf (fin, "% %", &1, & 2);
[1--; 12--;

| 2;
first_edge[l1];

node[nune]

next [nune]
first_edge[l 1] = nune++

node[nune] [1;

first_edge[l 2];

next [nune]
first_edge[l 2] = nune++
}

fclose(fin);

for (v =0; Ilv < nunv; |v++) edge[lv] = par[lv] = -1;
df s(0, 0);
for (Iv =0; Iv < numv; |v++)
if (tvis[lv]) {
fprintf (stderr, "graph is not connected! (%)\n",
exit(1);
}
bcnt = 0;

for (Iv =0; Iv < numv; |v++)

if (!'mark[lVv]) bcnt++;

fprintf (fout, "%\n", bcnt-1);
fcl ose(fout);
return O;

[v);

Depot — example solution

{
prog: depot
| ang: pascal

}

const
maxN=11;

type
carr=array[1..maxN of |ongint;

var
i,j,k,r,n:longint;
tbl:array[1..maxN, 1. . maxN] of |ongint;
nt bl , order:array[1..maxN+1] of |ongint;
fi,fo:text;

procedure displ ay;
var i,j:longint;
begi n
for i:=1to r do
begi n
for j:=1to ntbl[i] do
wite(tbl[i,j]," ');
witeln;
end;
end;

procedure recurse(nd:longint);
var
i,j,k,1,v,t:longint;
str:string;
strp:”~string;

c:carr;
begi n
i f nd=n then
begi n
str:="";
for i:=n downto 1 do
begi n
if i<n then wite(fo," ");
wite(fo,order[i]);
end;
witeln(fo);
exit;
end;
for i:=1tor do
begi n

if ntbl[i]=0 then break
if ntbl[i]>ntbl[i+1] then
begi n

vi=tbl[i,ntbl[i]];
dec(ntbl[i]);
for j:=i-1 downto 1 do
for k:=ntbl[j] downto 1 do
if v>tbl[j,k] then

begi n
t:=v;
v:=tbl[j,k];
tbl[j,k]:=
clj]l:=
br eak;

end;

order[nd+1]: =
recurse(nd+1);

for j:=1to i-1 do
begi n
t:=v;
V"tb|[J.C[J]]
thl[j,c[j]]:=
end;
inc(ntbl[i]);
tbl[i,ntbl[i]]:

end;
end;
end;

begi n
assign(fi, ' depot.in');
assign(fo, ' depot.out');

reset (fi);
read(fi,r);

n: =0;

for i:=1tor do
begi n

read(fi,ntbl[i]);
inc(n,ntbl[i]);
for j:=1to ntbl[i] do
read(fi,tbl[i,j]);
end;
close(fi);

rewite(fo);

ntbl [r+1]:=

recurse(0);

cl ose(fo);
end.

Double — example solution (Tom Ver hoeff)

pr ogr am Doubl e;

{ Copyright (c) 2001, Tom Verhoeff (TUE) }

{ A good solution for task DOUBLE of IO 2001 Conpetition }
uses AESIi bP;

{$B-, | +, Q+, R+, S+}

const
TaskNane = 'doubl e';
CaselD: String =''; { actually a variable, value can be overruled }
| npExtension = "'.in";
Qut Extension = '.out';
Qut Header = "#FILE ; { required start of header on first line of output file }
HexBits = 4; { # bits per hex }
MaxRel evant = 5; { maxi mum nunber of relevant hexits in keys }
var
s : Integer; key size, i.e. nunber relevant hexits in keys (task input) }

{
p : HexStr; { plaintext nessage (task input) }

c2 : HexStr; { double-encrypted ci phertext nmessage (task input) }
ki1 : HexStr; { first recovered key of pair (task output) }

k2 : HexStr; { second recovered key of pair (task output) }

{ derived val ues }
sBytes: Integer;
sPadBits: |nteger;

{ # key bytes possibly nonzero }
{ # 0-padding hexits in highest used byte, 0 or 1}
shMaxLast: Byte; { max value of |ast byte, $ff=255 or $f0=240 }
sSt epLast: Byte; { mn non-zero value of last byte, 1 or $10=16 }
pt : Bl ock; { corresponds to p }
ct : Bl ock; { corresponds to c2 }
ckl: Bl ock; { corresponds to k1 }
ck2: Bl ock; { corresponds to k2 }

procedur e Readl nput;
var inp: Text;
begi n
Assign (inp, TaskName + CaselD + | npExtension)
; reset (inp)
; readln (inp, s)
; readln (inp, p)
; readln (inp, c2)
; Cose (inp)
; sBytes := (s+1) div 2
; sPadBits :=4 * (1 - (s-1) nod 2)
; sMaxLast := ($ff SHL sPadBits) AND $ff
; SStepLast := 1 SHL sPadBits
; HexStrToBlock (p, pt)
; HexStrToBlock (c2, ct)
end; { Readl nput }

procedure Wit eCQutput;
var out: Text;
begi n
Bl ockToHexStr (ckl, k1)

; Bl ockToHexStr (ck2, k2)

; Assign (out, TaskName + Casel D + Qut Extension)

; rewite (out)

; witeln (out, QutHeader, ' ', TaskNane, ' ', CaselD)
; witeln (out, k1)

; witeln (out, k2)

; Close (out)

end; { WiteQutput }

function Equal Block (const bl, b2: Block): Bool ean;
var i, j: Integer;
begi n
i :=0; j := BlockLen
; while i <>j do
if bl[i] = b2[i] then Inc (i)

else j (=i
; Equal Block := (i = BlockLen)
end; { Equal Bl ock }
const
NKey's = Longint (1) SHL (HexBits * MaxRelevant); { max # keys }
Unoccupied = -1 {NKeys}; { special value for type ConpressedKey }
HashModul us = 2 * NKeys;
MaxHash = HashMbdulus - 1; { power of 2 mnus 1}
type

HashValue = 0 .. MaxHash;
ConpressedKey = Longlnt {0 .. Unoccupied};
Table = array [HashValue] of record
cck: ConpressedKey;
nmsg: Bl ock;
end;

function ConpressKey (const ck: Block): ConpressedKey;

var i: Integer; cck: ConpressedKey;
begi n

cck :=ck [0]
; for i :=11to 3 do

cck :=(cck SHL 8) ORck [i]
; ConpressKey : = cck
end; { ConpressKey }

procedure UnconpressKey (cck: ConpressedKey; var ck: Block);
{ pre: ck[s..BlockLen-1] = 0 }

var i: |nteger;
begi n
for i 3 downto 1 do begin

ck [i] := cck AND $ff
; cck := cck SHR 8
end { for i }
; ck [O] :=cck
end; { UnconpressKey }

function HashMessage (const nt: Block): HashVal ue;

var i: Integer; hv: Cardinal;
begi n

hv :=nmt [0]
; for i :=11to 3 do

hv := (hv SHL 8) ORnmt [i]
; HashMessage := hv AND $1fffff
end; { HashMessage }

procedure EnptyTable (var t: Table);
var h: HashVal ue;
begi n
for h := 0 to MaxHash do
t [h] . cck := Unoccupi ed
end; { EnptyTable }

procedure Store (var t: Table; const m, ck: Block);
var hv: HashVal ue;
begi n
hv : = HashMessage (nt)
; whilet [hv] . cck <> Unoccupied do { occupied }
hv := (hv + 1) nod HashMdul us { linear hashing }
; with t [hv] do begin

cck := ConpressKey (ck)
; nmBg 1= nt
end { with }

end; { Store }

procedure Retrieve (const t: Table; const m: Bl ock;
var found: Bool ean; var ck: Block);
{ pre: ck[s..BlockLen-1]=0

post: if found then mt occurs with key ck else nt does not occur }
var hv: HashVal ue;

begi n

hv : = HashMessage (nt)
; found := Fal se
; repeat

witht [hv] do
if cck <> Unoccupi ed then begin
found : = Equal Bl ock (nt, nsg)
; i f found then
UnconpressKey (cck, ck)
el se { linear hashing }
hv := (hv + 1) nod HashMdul us
end { if }
until found or (t [hv] . cck = Unoccupied)
end; { Retrieve }

procedure FirstKey (var k: Block);

var i: |nteger;
begi n
for i := 0 to BlockLen - 1 do
k[1] :=0

end; { FirstKey }

function NextKey (var k: Block): Bool ean;
{ ret: whether k is indeed next key }

var i, j: Integer; max, step: Byte;
begi n
i :=-1;] :=sBytes - 1

; max = sMaxLast
; step := sSteplLast
; while i <> j do

if k[j] = mx then begin

k[j]:=0

; max = 255

; step :=1

; Dec (])

end { then }

else { k[j] <> max } begin
Inc (k[j], step)
;b=
end { else }
; NextKey := 0 <= j
end; { NextKey }

var
tbl: Table; { auxiliary }

procedur e Encrypt Phase;
var nt1l: Bl ock;
begi n
FirstKey (ckl)
; repeat
Encrypt (pt, ckl, ntl)
; Store (tbl, m1, ckl)
until not NextKey (ckl)
end; { EncryptPhase }

procedur e Decrypt Phase

var m1l: Bl ock; found: Bool ean; cklcandi date, ck2candi dat e:

begi n
FirstKey (cklcandidate) { for Retrieve/ UnconpressKey }
; FirstKey (ck2candidate)
; repeat
Decrypt (ct, ck2candidate, ntl)
; Retrieve (tbl, m1, found, cklcandidate)
; if found then begin
; ¢kl := cklcandi date
; ck2 := ck2candi date
end { if }
until found or not NextKey (ck2candidate)
; if not found then witeln ('No solution found!?")
end; { DecryptPhase }

procedur e Comput eAnswer ;
begi n
EnptyTable (thbl)
; Encrypt Phase
; Decrypt Phase
end; { ConputeAnswer }

begi n
witeln ('Solver for Double')
; witeln (' HashModul us ="', HashMdulus : 10)
; witeln ('SizeO (Table) ="', SizeO)h (Table) : 10)
; i f ParamCount > O then CaselD := ParanStr (1)
; Readl nput
; Conput eAnswer
; WiteCQut put
end.

Bl ock;

loiwari - example solutions (Gyula Horvath)

/*

PROB: ioi wari
LANG C++

*/

#i ncl ude <stdi o. h>
#i ncl ude <i ostream h>

#define TSi ze 7

#defi ne Tot al 20

#defi ne I nf (Total * 2 + 1)
#def i ne MaxN 279935L

#define true 1
#define false O

t ypedef struct Board

{
char Who;
unsi gned char Pit[TSi ze];
unsi gned char Bank[2];

} Board;

static unsigned char T[2][MaxN + 1];
static unsigned char OML[MaxN + 1];
static Board B;

static | ong B6N(Board *B)
{

short i;

| ong a;

a =0,

for (i =0; i < TSize; i++)
a=a*6+B>Pit[i];
return a;

}

static void Move(Board *B, int i, Board *BB)
{

int S

int j;

int W, W

S=B->Pit[i - 1];
W = B->Who;
W= 1'W;
*BB = *B;
BB- >Who = W
BB->Pit[i - 1] = 0;
o=
while (S > 1) {
j ++;
if (j > TSize)
=1
if (BB->Pit[j - 1] == 5) {
BB->Pit[j - 1]--;
BB- >Bank[W] ++;
} else {

BB->Pit[j - 1]++
S-;
}
}

j ++;
if (j > TSize)
=1
if (BB->Pit[j - 1] >= 1 & BB->Pit[]j - 1] <= 4) {
BB- >Bank[W] += BB->Pit[] - 1] + 1,
BB->Pit[j - 1] = O;
} else
BB- >Bank|[W ++;

}
static short M nMax(Board *B)
{

char i;

Board BB;

short Diffn, Dffs;

| ong a;

a = B6N(B);

if (T[B->Who][a] != Inf)

return (T[B->Wio][a]);

if (B->Wo) {
Diffn = -1Inf;
for (i =1; i <= TSize; i++) {
if (B->Pit[i - 1] > 0) {
Move(B, i, &BB);
Diffs = M nMax(&BB) + BB. Bank[true] - BB.Bank[0O] - B->Bank[true] +
B- >Bank][0] ;
if (Diffs > Diffn) {
Diffn = Diffs;
OM[a] =i;
}
}

} else {
Diffn = Inf;
for (i =1; i <= TSize; i++) {
if (B->Pit[i - 1] > 0) {
Move(B, i, &BB);
Diffs = M nMax(&BB) + BB. Bank[true] - BB.Bank[0O] - B->Bank[true] +
B- >Bank][0] ;
if (Diffs < Dffn) {
Diffn = Diffs;
[*OMR[a] =i;*/
}
Y} /*for i*/
}

}
T[B->Wio][a] = Diffn;
return D ffn;

}

static void Start(void)

int bead, i, Dff;

for (i =0; i < TSize; i++) {
scanf (" %", &bead);
B.Pit[i] = bead;

}

B. Bank[true] = O;
B. Bank[0] = O;
B. Who = true;

for (i =1; i <= MaxN i++) {
T[true][i] = Inf;
T[O][i] = Inf;

}

T[true][0] = Total;

T[O][O] = Total;

oML 0] = 0;

Diff = MnMax(&B);
}

voi d Pl ay(void)
{

| ong a;

int i, ii;

for (;:) {
a = B6N(&B);
i = OM[a];
cout <<i <<endl <<f | ush;
Move(&B, i, &B);
if (B.Bank[1l] + B.Bank[0] == Total)
exit(0);

cin>>ii;

Move(&B, ii, &B);

if (B.Bank[1l] + B.Bank[0] == Total)
exit(0);

}

i nt mai n(voi d)

{
Start();

Play();

#i ncl ude <stdi o. h>

#define TSi ze 7

#defi ne Tot al 20

#defi ne | nf (Total * 2 + 1)
#def i ne MaxN 279935L

#define true 1
#define false O

typedef struct Board

char Who;
unsi gned char Pit[TSi ze];
unsi gned char Bank[2];

} Board;

static unsigned char T[2][MaxN + 1];
static unsigned char OML[MaxN + 1];
static Board B;

static | ong B6N(Board *B)
{

short i;

| ong a;

a = 0;

for (i =0; i < TSize; i++)
a=a*6+B>Pit[i];
return a;

}

static void Move(Board *B, int i, Board *BB)
{

int S

int j;

int WO, W

S=B->Pit[i - 1];
W = B->Who;
W= 1'W;
*BB = *B;
BB- >Who = W
BB->Pit[i - 1] = O;
o=
while (S > 1) {
j ++;
if (j > TSize)
j =1
if (BB->Pit[j - 1] == 5) {
BB->Pit[j - 1]--;
BB- >Bank[W] ++;
} else {
BB->Pit[j - 1]++;
S -
}
}

j ++;
if (j > TSize)
j =1

if (BB->Pit[j - 1] >= 1 & BB->Pit[]j - 1] <= 4) {
BB- >Bank[W] += BB->Pit[] - 1] + 1;
BB->Pit[j - 1] = O;
} else
BB- >Bank|[W ++;
}

static short M nMax(Board *B)
{

char i;
Board BB;

short Diffn, Dffs;

| ong a;
a = B6N(B);
if (T[B->Who][a] != Inf)
return (T[B->Wo][a]);
if (B->Wo) {
Diffn = -Inf;

for (i =1; i <= TSize; i++) {
if (B->Pit[i - 1] > 0) {
Move(B, i, &BB);
Diffs = M nMax(&BB) + BB. Bank[true] - BB.Bank[0O] - B->Bank[true] +
B- >Bank][0] ;
if (Diffs > Diffn) {
Diffn = Diffs;
OM[a] =i;
}
}

} else {
Diffn = Inf;
for (i =1; i <= TSize; i++) {
if (B->Pit[i - 1] > 0) {
Move(B, i, &BB);
Diffs = M nMax(&BB) + BB. Bank[true] - BB.Bank[0O] - B->Bank[true] +
B- >Bank][0] ;
if (Diffs < Dffn) {
Diffn = Diffs;
[*OMR[a] =i;*/

} [*for i*/
}
}

T[B->Wo][a] = Diffn;
return D ffn;

}

static void Start(void)

{
int bead, i, Dff;

for (i =0; i < TSize; i++) {
scanf (" %", &bead);
B.Pit[i] = bead;

}

B. Bank[true] = O;

B. Bank[0] = O;

B. Wio = true;

for (i =1; i <= MaxN i++) {
T[true][i] = Inf;
T[O][i] = Inf;

}

T[true][O0] = Total;

T[O][O] = Total;

oML 0] = 0;

Diff = MnMax(&B); }

voi d Play(void)

{
| ong a;
int i, ii;
for (;:) {
a = B6N(&B);
i = OM[a];
printf("%l\n", i); fflush(stdout);
Move(&B, i, &B);
if (B.Bank[1l] + B.Bank[0] == Total)
exit(0);
scanf ("%", & i);
Move(&B, ii, &B);
if (B.Bank[1] + B.Bank[O] == Total)
exit(0);
}
}
i nt mai n(voi d)
{
Start();
Play();
}
Program Owari ;
Const
TSi ze=7, {# pits}
Tot al =20; {total nunber of beads in pits}
Inf =2*Tot al +1; {infinity value for m ni max}
MaxN =6* 6* 6* 6* 6* 6* 6- 1; {max. base-6 nunber=279936}
Type
Boar d=Record
VWho: Bool ean; {=True: first player noves next}
Pit: Array[1l..TSize] of Byte; {Pit contents }
Bank: Array[Bool ean] of Integer;{Banks for players}
End;
Var

T: Array[Bool ean, 0. . MaxN] of Byte;
{T[w,b] is the best score difference for player w, that can be obtai ned
from game position whose base-6 nunber is b }

OML: Array[O..MaxN] of Byte; {wi nning noves for the first player}
B: Boar d; {current gane board}
i : Longi nt;

Functi on B6N(Var B:Board):Longint;
{Base-6 nunber id of board B}
Const
P6: Array[1..TSi ze] of Longi nt=(6*6*6*6*6*6, 6*6*6*6*6, 6*6*6*6, 6*6*6, 6*6, 6, 1);
Var i:lnteger;
a: Longi nt;

{Remark: Rotational equivalent of B that gives the | east B6N shoul d be taken
first. This would reduce the required nmenory to 121305 from 279936 }

Begi n{ B6N} ;
a: =0;
For i:=1 To TSize Do Begin
a:=a+B. Pit[i]*P6[i];
End;
B6N: =a;
End{ B6N} ;

Procedure Move(Var B:Board; i:Byte; Var BB:Board);
Var S:1nteger;
j : Byte;
W), W Bool ean;

Begi n
S=B.Pit[i];
W): =B. Who; {current player}
W =Not W); {opposite player}
BB: =B;
BB. Who: =W
BB.Pit[i]:=0;
ji=i;
VWile S>1 Do Begin
Inc(j); If j>Tsize Then j:=1;
If BB.Pit[j]=5 Then Begin
Dec(BB. Pit[j]);
I nc(BB. Bank[W]) ;
End El se Begin
Inc(BB.Pit[j]);
Dec(9);
End;
End{whi | e};
Inc(j); If j>Tsize Then j:=1;
If (BB.Pit[j]>=1)And(BB.Pit[j]<=4) Then Begin
I nc(BB. Bank[W] ,BB. Pit[j]+1);
BB.Pit[j]:=0;
End El se Begin
I nc(BB. Bank[W) ;
End;
End{ Move};

Function M nMax(Var B:Board):Integer;
{Returns the optimal score difference, and conputes the optinmal nove for the
first player. Conputation is by recursion with nmenoization. }

Var
i :Byte;
BB: Boar d;
Diffn,D ffs:Integer;
a: Longi nt;

Begi n{ M nMax}

a: =B6N(B) ; {base-6 nunber for B}
If (T[B.Wo,a])<>Inf Then Begin {already conputed, }
M nMax: =T[B. Who, a]; {read the value from T}
Exit;
End;
I f B.Who Then Begin {first player noves}

Diffn:=1Inf;

For i:=1 To TSi ze Do
If (B.Pit[i]>0) Then Begin
Move(B, i, BB);
Di f fs: =M nMax(BB) +(BB. Bank[Tr ue] - BB. Bank][Fal se]) -
(B. Bank[Tr ue] - B. Bank[Fal se]);
If Diffs>Diffn Then Begin
Diffn:=Diffs;
oML a] : =i ;
End;
End;
;{for i}
End El se Begin {second pl ayer noves}
Di ffn:=Inf;
For i:=1 To TSi ze Do
If (B.Pit[i]>0) Then Begin
Move(B, i, BB);
Di f fs: =M nMax(BB) +(BB. Bank[Tr ue] - BB. Bank][Fal se]) -
(B. Bank[Tr ue] - B. Bank[Fal se]);
If Diffs<Di ffn Then Begin
Diffn:=Diffs;
End;
End; {for i}
End;

T[B. Who, a]:=Diffn; { menoi se}
M nMax: =Di f f n;
End{ M nMax};

Procedure Pl ay(Var B:Board);
{Play the gane}
Var i,ii:lnteger;
a: Longi nt;
Begi n
VWil e True Do Begin
a: =B6N(B) ;
i:=0M][a];
Move(B,i, B);
Witeln(i);
I f B.Bank[true] +B. Bank[fal se] =Total Then halt;
ReadLn(ii);
Move(B, ii, B);
I f B.Bank[true] +B. Bank[fal se] =Total Then halt;
End{ whi | e};
End{ Pl ay};
Begi n{ Pr og}
For i:=1 To TSize Do {read the initial game position}
ReadLn(B.Pit[i]);
B. Bank[Tr ue] : =0; {init bank contents}
B. Bank] Fal se] : =0;
B. Who: =Tr ue; {first player noves first}
For i:=1 To MaxN Do Begin {init for m nimax conputation}
T[True, i]:=Inf;
T[Fal se,i]: =Inf;
End;
T[True, O0]:=Total;
T[Fal se, 0] : =Tot al ;

OoMvL[0] : =0;
M nMax(B) ; {conpute optimal noves for the first player}
Pl ay(B); {play the gane}

End.

M obiles — example solution (Timo T ossavainen)

/*

PROB: nobi |l es
LANG c

*/

/* 1A 2001 nobiles problem 2-dinmensional binary indexed tree solution */

#i ncl ude <stdi o. h>
#defi ne MAX S| ZE 1024

void init (int size);

void update (int x, int y, int anmount);

int sum (int x1, int y1, int x2, int y2);
int main()

int cnd, al, a2, a3, a4;

do

scanf ("%", &cnd);
switch (cnd)

{

case O:
scanf ("%", &al);
init (al);
br eak;

case 1:
scanf ("% % %", &1, &a2, &a3);
update (al, a2, a3);
br eak;

case 2:
scanf ("% % % %", &al, &2, &a3, &ad);
printf ("%l\n", sun(al, a2, a3, a4));
fflush (stdout);
br eak;

defaul t:

}
} while(emd !'= 3);
return O;
}
#define LONBIT(x) ((x) & ((x) ™ ((x) - 1)))

int size = 0;
int table [MAX_SI ZE] [MAX_SI ZE] ;

void init (int sz)

{

for (size = 1; size < sz; size <<= 1)
}
int sum(int x1, int yl, int x2, int y2)
{

int res, ix1, ix2, iyl, iy2;
res = 0;
for(iy2 = y2+41; iy2 > yl; iy2 -= LONBIT(iy2))

for (ix2 = x2+1; ix2 > x1; ix2 -= LONBIT(ix2))
res += table[ix2-1][iy2-1];

for (ix1 = x1; ix1 >ix2; ix1 -=LOVNBIT(ix1))
res -= table[ix1-1][iy2-1];

for(iyl =vyl1; iyl >iy2; iyl -= LONBIT(iyl))

{

for (ix2 = x2+1; ix2 > x1; ix2 -= LONBIT(ix2))
res -= table[ix2-1][iyl-1];

for (ix1 = x1; ix1 >ix2; ix1 -= LONVBIT(ix1))
res += table[ix1-1][iyl-1];
}

return res;

}

void update (int x, int y, int anmount)

int ix;
X++; y++;
for(;

y <= size; y += LONBIT(y))

for(ix = X; ix <= size; ix += LONBIT(ix))
tabl e[ix-1][y-1] += anount;

Pavement — example solution (Zoran Dzunic)

program Pavenent ;
type niz=array[O0..2187] of integer
little _matrix=array[1l..3,1..3] of byte;
mddl e_matrix=array[1l..7,1..3] of byte;
var N, Mi,j,k, Nexp3, num addi t, M nM st akes: | ongi nt ;
B1, B2: ni z;
T:-array[1..9] of little_matrix;
Fr:array[1..9] of byte;
Tcc, Tccl: mddl e _nmatrix;
ch: char;
f,g:text;

function exp3(k:longint):Ilongint;

var i, h:longint;

begi n
h: =1;
for i:=1to k do
h: =h*3;
exp3: =h;
end;

procedure reconstruct(k:Iongint);
var i,j:longint;
begi n
Tccl: =Tcc;
for i:=N downto 1 do
begi n
j:=k nmod 3;
k:=k div 3;
if j>0 then Tccl[i,1]:=Tccl[i, 1]+2;
if j=2 then Tccl[i, 2]:=Tccl[i, 2] +2;
end;
end;

procedure construct(var k:longint);
var i,j:longint;
begi n
k: =0;
for i:=1 to N do

begi n
j 1 =0;
if (Tccl[i,2]>=2) and (Tccl[i,2]<=3) then j:=j+1;
if (Tccl[i,3]>=2) and (Tccl[i, 3]<=3) then j:=j+1;
k: =k*3+4j ;
end;
end;

procedure Try_ to_put(k:longint);
var i,j,l,x,z,val, cover:Ilongint;
ok: bool ean;
begi n
if Tccl[k, 1] <2 then
for i:=1to 9 do

begi n
ok: =t r ue;
j =1,
cover: =0;
while (j<=3) and ok do
begi n
l:=1;
while (1<=3) and ok do
begi n
if T[i][j,1]1=1 then
begi n
X:=k-Fr[i]+4;
if (x<1) or (x>N) or (Tccl[x,1]>1) then
ok: =f al se;
if Tccl[x,l]=1 then cover:=cover+1
end;
[: =1 +1;
end;
o=+
end;

i f cover<3 then ok:=fal se;
if ok then
begi n
for j:=1to 3 do
for I:=1to 3 do
if T[i][j,1]1=1 then
begi n

x:=k-Fr[i]+4;
Tcel[x,1]:=Teccl[x,]+2;
if Tccl[x,!1]=2 then num =num+l
el se num =num 1
end;
if k=N then
begi n
construct(val);
z:=B2[val];
i f nun<z then B2[val]:=num
end
el se Try_to_put(k+1);
for j:=1to 3 do
for 1:=1 to 3 do
if T[i][j,1]1=1 then
begi n
x:=k-Fr[i]+4;
Tcel[x,1]:=Teccl[x,1]-2;
if Tccl[x,!1]=0 then num =num1
el se num =numt1;
end;
end;
end;
if k=N then
begi n
construct(val);
z:=B2[val];
i f nun<z then B2[val]:=num
end
el se Try_to_put(k+1);
end;

procedure Make_conbi nati ons;
var i,j:longint;
begi n
for i:=0 to Nexp3 do
B2[i]:=10000;
for i:=0 to Nexp3 do
begi n
num =B1[i];
i f nunmk10000 then

begi n
reconstruct (i);
num =numtaddi t ;
Try_to_put(1);

end;
end;
Bl: =B2;
end;
begi n

T(1][2,1]:=1; T[2][21,2]:=1; T[1][1,3]:=1; T[1][2,1]:=0;
T[1][2,3]:=0; T[21][3,1]:=0; T[1][3,2]:=0; T[1][3, 3]:=0;
T[2][2,1]:=1; T[2][1,2]:=0; T[2][1,3]:=0; T[2][2,1]:=1;
T[2][2,3]:=0; T[2][3,1]:=1; T[2][3,2]:=0; T[2][3,3]:=0;
T[3][2,1]:=0; T[3][1,2]:=1; T[3][1,3]:=0; T[3][2,1]:=1;
T[3][2,3]:=1; T[3][3,1]:=0; T[3][3,2]:=0; T[3][3, 3]:=0;
T[4][21,1]:=0; T[4][1,2]:=1; T[4][1,3]:=0; T[4][2,1]:=1;
T[4][2,3]:=0; T[4][3,1]:=0; T[4][3,2]:=1; T[4]][3, 3]:=0;
T[5][2,1]:=0; T[5][1,2]:=1; T[5][1,3]:=1; T[5][2,1]:=1;
T[5][2,3]:=0; T[5][3,1]:=0; T[9][3,2]:=0; T[5][3, 3]:=0;
T[6][21,1]:=1; T[6][1,2]:=0; T[6][1,3]:=0; T[6][2,1]:=1;
T[6][2,3]:=0; T[6][3,1]:=0; T[6][3,2]:=1; T[6][3, 3]:=0;
T[7]1[2,1]:=0; T[7]1[21,2]:=1; T[7][1,3]:=0; T[7][2,1]:=1;
T[7]1[2,3]:=0; T[7][3,1]:=1; T[7][3,2]:=0; T[7][3, 3]:=0;
T[8][21,1]:=1; T[8][1,2]:=1; T[8][1,3]:=0; T[8][2,1]:=0;
T[8][2,3]:=1; T[8][3,1]:=0; T[8][3,2]:=0; T[8][3, 3]:=0;
T[9][2,1]:=0; T[9][1,2]:=1; T[9][1,3]:=0; T[9][2,1]:=1;
T[9][2,3]:=1; T[9][3,1]:=0; T[9][3,2]:=1; T[9][3, 3]:=0;
Fri1]:=1; Fr[2]:=1; Fr[3]:=2; Fr[4]:=2; Fr[5]:=2; Fr[6]
Fr[9]:=2;

assign(f,' Pavenent.in"');
assign(g, ' Pavenent.out');
reset (f);

rewite(qg);

readl n(f, M N);
for i:=1to 3 do
if i<=Mthen

begi n

T1[2,

T2][2,

T[3][2,

T[4][2,

T[5]1[2,

Tej[z,

7112,

T[8][2,

T91[2,

2]:

2]:

2]:

2]:

2]:

2]:

2]:

2]:

2]:

=1; Fr[7]

1=2; Fr[8]:=1;

for j:=1 to N do
begi n
read(f, ch);
Tcc[j,i]:=49-ord(ch);
end;
readl n(f);
end
el se
for j:=1to N do
Tcclj,i]:=7;

Nexp3: =exp3(N)
num =0;
for i:=1to 2 do

for j:=1 to N do

if Tcc[j,i]=1 then num =numtl;

B1[0] : =num
for i:=1 to Nexp3 do

B1[i]:=10000;

i:=1;
while (i<=M do
begi n
addi t : =0;
for j:=1to N do
if Tcc[j,3]=1 then addit:=addit+1
Make conbi nati ons;
i:=i+1;
if i<=Mthen
begi n
for j:=1to 2 do
for k:=1 to N do
Tcc[k,j]:=Tcc[k,j+1];
if i +2<=Mthen
begi n
for j:=1 to N do

begi n
read(f, ch);
Tcc[j, 3] : =49-ord(ch);
end;

readl n(f);

end
el se
for j:=1 to N do
Tcclj, 3] : =7;
end;
end;

M nM st akes: =B1[0] ;
witel n(g, M nM st akes);
cl ose(f);
cl ose(Q);

end.

Scor e — example solution (Timo Poranen)

/*

PROB: score
LANG C++
*/

#i ncl ude <i ostream h>
const int MAX=1000;

int start_position_passed;
i nt nunber _of _positions;

int start_position;
int current_position;

i nt owner _of _the_position[MAX];
i nt val ue_of _the_position[MAX];
i nt adj acency_mat ri x[MAX] [MAX] ;

int player_strategy[MAX] ;

i nt dfs_nunber[MAX] ;
int dfs_counter;
int player_|_max[MAX];
int player_I1_max[MAX];
voi d search(int position) {
df s_nunber [position] =df s_count er;
df s_count er ++;
int player_l_w ns[MAX];
int player_I1_w ns[MAX];
for (int i=0;i<nunber_of_positions;i++){
pl ayer | _wins[i]=-1;
player Il _wins[i]=-1;

}

for (int i=0;i<nunber_of_positions;i++) {
if (adjacency_matrix[position][i] !'=0) {
if (dfs_number[i]==-1) {
search(i);
if (player_I _max[i]>player_Il_max[i]) {
pl ayer | _wins[i]=player_|_max[i];

else if (player_|I_max[i]<player Il_max[i]) {
player Il _wins[i]=player_Il_max[i];

}

el se {

}
}
el se {

if (player_I _max[i]>player_Il_max[i]) {

pl ayer | _wins[i]=player_|_max[i];

else if (player_|I_max[i]<player_ Il_max[i]) {
player Il _wins[i]=player_Il_max[i];

el se {

}

}

}
}
int j=-1;
i nt max_score=-1;
i nt opponent_mi n_score=-1
i f (owner_of _the_position[position]==1) {
for (int i=0;i<nunber_of_positions;i++) {
if (player_I_wins[i]>1) {
if (player_I_w ns[i]>max_score) {
max_score=player | _wns[i];
=t
}
}

fF@at=-1)1
pl ayer _strategy[position]=j;

}
i

pl ayer | _max[position] =max_score;
pl ayer Il _max[position]=player_IIl_max[j];

i f (value_of_the_position[position]>nmax_score) ({
pl ayer | _max[position] =val ue_of _the_position[position];

}
el se {
for (int i=0;i<nunber_of_positions;i++) {
if (player_Il_wins[i]>1 & opponent_m n_score==-1) {
opponent _m n_score=player Il _wns[i];
=
}
else if (player_Il _wins[i]>1 & player_Il_wi ns[i]<opponent_m n_score) {
opponent _m n_score=player Il _wns[i];
j=i
}
el se {
}
}
}

pl ayer _strategy[position]=j;

pl ayer | _max[position]=player | _max[j];

pl ayer Il _max[position] =opponent _m n_score;

i f (value_of _the_position[position]>player_|_max[position]) ({
pl ayer | _max[position] =val ue_of _the_position[position];

}
}
el se {
for (int i=0;i<nunber_of_positions;i++) {
if (player_II_wins[i]>1) {
if (player_II_w ns[i]>max_score) {
max_score=player _Il_wins[i];
=t
}
}

}
it r=-1) |
pl ayer _strategy[position]=j;
pl ayer Il _max[position] =max_score;
pl ayer | _max[position]=player | _max[j];
i f (value_of_the_position[position]>max_score) ({
pl ayer Il _max[position]=val ue_of the_position[position];

}

el se {
for (int i=0;i<nunber_of_positions;i++) {

if (player_I_wins[i]>1 &% opponent_m n_score==-1) {
opponent _m n_score=player | _wins[i];
=

else if (player_|I _wins[i]>1 & player_|_w ns[i]<opponent_m n_score) {
opponent _m n_score=player | _wns[i];
j=i

}
el se {
}
}
pl ayer _strategy[position]=j;
pl ayer Il _max[position]=player_IIl_max[j];
pl ayer | _max[position] =opponent _m n_score;
if (value_of _the_position[position]>player_Il_max[position]) {
pl ayer Il _max[position]=val ue_of the_position[position];
}

}
}

void construct _strategy() {
df s_count er =0;
for (int i=0;i<nunber_of_positions;i++) {
if (owner_of _the_position[i]==1) {
pl ayer | _max[i]=val ue_of the_position[i];
pl ayer Il _max[i]=0;

else if (owner_of _the_position[i]==2) {
pl ayer | _max[i] =0;
pl ayer Il _max[i]=val ue_of _the_position[i];

el se {
}
df s_nunmber[i]=-1

search(0);

}

void pl_nove(int nove)

if (move==start_position)
start_position_passed++;
current _position=nove;

}

voi d p2_nove(int target)
{
if (target==start_position)
start_position_passed++;
current _position=target;

}

voi d readl nput () {
int i;
int j;

ci n>>nunber _of _posi tions;

for (i=0;i<nunmber_of positions;i++) {
for (j=0;j<nunmber_of positions;j++) {

ci n>>adj acency_matrix[i][j];

}

}

for (i=0;i<nunber_of positions;i++) {
ci n>>owner _of _the_position[i];

for (i=0;i<nunmber_of positions;i++) {
ci n>> val ue_of _the_position[i];
}

}

int min () {
start_position=1;
start_position_passed=0;
current _position=start_position
readl nput () ;
construct_strategy();

for (;;) {
i f (owner_of _the_position[current_position-1]==1)
{
i nt nmove=pl ayer _strategy[current_position-1];
nove++;

cout <<(nove) <<endl| <<f | ush;
pl_mnove(nove);

if (current_position==start_position & start_position_passed==1)
{

exit(0);

i f (owner_of _the_position[current_position-1]==2)

{

int ans;

ci n>>ans;

p2_mnove(ans);

if (current_position==start_position & start_position_passed==1)

exit(0);
}

}
exit(0);

Twofive - example solution (Tero Karras)

{
prog: twofive
| ang: pascal

}

const
st at es=6*6*6*6*6;

var
recl ev: | ongint;
snum array[0..states-1] of longint;
state:array[0..5] of |ongint;
known, kncol : array[1..25] of |ongint;

function cal cstate: | ongint;
var i,a,b,c:longint;
begi n
i nc(recl ev);
a: =0;
for i:=1 to 5 do
a:=a*6+state[i];
i f snunfa] <0 then
begi n
b: =0;
c: =known[r ecl ev] ;
if c<0 then
begi n
for i:=1to 5 do
if state[i-1]>state[i] then
begi n
inc(state[i]);
inc(b,calcstate());
dec(state[i]);

end;
end
el se
if (state[c-1]>state[c]) and (state[c]+1l=kncol[reclev]) then
begi n
inc(state[c]);
inc(b,calcstate());
dec(state[c]);
end;
snunf a] : =b;
end;

cal cstate: =snunfaj;
dec(reclev);
end;

function nuntonts:|ongint;

var i : longint;
begi n
state[0] : =5;

for i:=1 to 5 do
state[i]:=0;

for i:=0 to states-2 do
snunfi]:=-1;

snunf st at es- 1] : =1;

recl ev: =0;

nunctont s: =cal cst at e;
end;

procedure display;
var i,j : longint;
tbl : array[1l..5,1..5] of |ongint;
begi n
for i:=1 to 5 do
for j:=1to 5 do
tbl[i,j]:=0;
for i:=1 to 25 do
if known[i]>0 then
tbl [known[i], kncol [i]]:=i;
for i:=1 to 5 do
begi n
for j:=1to 5 do
wite(char(tbl[i,j]+64));
witeln;
end;
end;

procedure clearfixed;
var
i : longint;
begi n
for i:=1 to 25 do
known[i]:=-1;
end;

function wordtonun(str : string):Ilongint;
var
i,j,k,cnumcchr:Ilongint;
begi n
cl earfi xed;
cnum =1,
for j:=1to 5 do
for i:=1to 5 do
begi n
cchr:=longint(str[i+(j-1)*5])-64;
for k:=1 to cchr-1 do
i f known[k] <0 then
begi n
known[k] : =j ;
kncol [k] : =i
i nc(cnum nunctonts) ;
known[k] : =-1;
end;
known[cchr]: =j;
kncol [cchr]: =i
end;
wor dt onum =cnum
end;

function nuntoword(cnum: |ongint):string;
var

i,j,k,a:longint;

str:string[30];
begi n

cl earfi xed;

for j:=1to 5 do
for i:=1to 5 do
for k:=1to 25 do
i f known[k] <0 then
begi n
known[k] : =j ;
kncol [k] : =i
stri+(j-1)*5]:=char(k+64);
a: =nuntonts;
if cnuma<l then break
dec(cnum a)
known[k] : =-1;
end;
str[0] : =char (25);
nunt owor d: =str;
end;

var
i,j,k,1,a:longint;
node: char;
str:string[30];
fi,fo:text;

begi n
assign(fi,"twfive.in");
assign(fo, twofive.out');

reset (fi);
rewite(fo);
readl n(fi, node);
if node="W then
begi n
readl n(fi,str);
writel n(fo,wordtonun(str));
end
el se
begi n
read(fi, a);
writel n(fo, nuntoword(a));
end;
close(fi);
cl ose(fo);
end.

Rocket - example solution (Jyrki Nummenmaa)

/*
PROB: rocket
LANG c++
*/

#i ncl ude "i ostream h"
#i ncl ude "fstreamh"

mai n() {

long N, x, sum=0, | argest=0;
ifstreamifile("rocket.in");
of stream ofil e("rocket.out");
ifile > N
for (int i=0;i<Ni++) {

ifile > x;

SUMFESUMtX;

if (x>l argest)

| ar gest =x;

}
if (largest>suml argest)

ofile << 2*(sum |l argest) << endl
el se

ofile << sum << endl

ofile.close();

Storage - example solution (Jyrki Nummenmaa)

/*

prob: storage
| ang: c++

*/

#i ncl ude "iostream h"

#i ncl ude "fstream h"

mai n() {
int N P, ones=0, twos=0, threes=0, Xx;
ifstreamifile("storage.in");

of stream ofi | e("storage. out");

ifile > N

ifile > P

for (int i=0;i<Ni++) {
ifile >> x;
switch (x) {
case 1 : ones++; break;
case 2 : twos++; break;

default : threes++; break;

}
}
for (int j=1;j<=P;j++) {
for (int t=1;t<= threes/P;t++)
ofile << "3 "
if (j<=threesy%)
ofile << "3 "
for (int w=l; w<= twos/P; wt++)
ofile << "2 "
if (j>P-(twos%))
ofile << "2 "
for (int o=1; o<= ones/P; 0++)
ofile << "1 "
if (j>P-(ones%))
ofile << "1 "
ofile << endl

}

ofile.close();

Notes - example solution

/ *

PROB: not es
LANG C++
*/

#i ncl ude <i ostream h>
voi d main()

i nt request =0;
cin >> request;
i nt count er=0;

while (request !'= 0)
{

count er ++;

cout <<r equest/1000<<" ";
r equest =r equest %4.000;

i f (counter==7)
cout <<r equest/ 250<<" 12333 ";
el se
cout <<r equest / 250<<"

r equest =r equest %250;
cout <<r equest /50<<" ";
r equest =r equest %50;
cout <<request/10<<" *";
r equest =r equest %0;
cout <<r equest /5<<" ";
request =r equest 9%o;

cout <<r equest <<endl <<f | ush;
cin >>request;

101 2001 Competition pages
Main | Competition rules | Programming environment
Grading | Task-related information | FAQ | Update history

This page contains the competition rules for 101 2001. There is more detailed information about several of
the issues, such as hardware, compilers, etc. on respective competition web pages. These rules are written
in a form which is addressed to the contestant.

101 2001 Competition rules

These competition rules include the Competition Procedures and Judging Procedures information, which the
host is obliged to send to invited countries four months prior to the competition. Minor changes to these
rules are possible. The final version will be distributed in the first GA meeting.

Competition dates

Competition equipment

Programming environment

Competition tasks

Practicing

Curfew

Competition-time routines

Grading
Other information

Competition Dates

101 2001 takes place from Saturday 14 July (Arrival Day) to Saturday 21 July (Departure Day). The First
Competition Day is Monday, 16 July, and the Second Competition Day is Wednesday, 18 July. On both
competition days you will be given three tasks to complete in the five hours from 9.00 to 14.00.

There is also a practice competition on Sunday, 15 July. All contestants must take part in the practice
competition.

Competition Equipment

The competition computers are Osborne Pro PCs with 933MHz Pentium |1l processors, 128 MB RAM, a
standard US keyboard, a mouse, and a color screen. Blank writing paper, pens, pencils and erasers will be
provided for you. You may not take any material such as e.g. diskettes, calculators, written or printed
materials, or communication devices into the competition area. A contestant who is in possession of this type
of material in the competition room may be disqualified from the competition.

Programming environment

The computers have a dual-boot installation of Debian Linux release version 2.2r2 and Windows 98 SE.
Items may have been removed from the standard installations and the installations may have been changed
in order to improve security and get smaller installations.
In both Linux and Windows environment, the programs installed for the competition are set up in such a way
that they can be found from the users' path (ie. no extra setup is needed to use the tools). Both Linux and
Windows platforms include

Gcc compiler version 2.95.2, and

Freepascal (fpc) compiler version 1.0.4.
These are the official compilers of 101 2001.
The contestant should be familiar with the programming package of his/her choice, including the use of
libraries or units. The contestant should be able to execute programs, change the working directory and
manage files, and use a web browser.
Similar installations will be used for the computers in the translation computer room. Thus, the installations
include a part of the Microsoft Office 2000, with e.g. Microsoft Word and some multilingual support for
Microsoft Office, and TeX for Linux.

Linux

The Debian Linux release 2.2r2 basic installation is done using a CD set built according to the instructions on
the Debian web pages. The packages are chosen by the method "Simple" with the following choices:

C++ Dev

C Dev

Debug

Devel Common
Gnome Apps
Gnome Desktop
X Window System
X Window System Core
TeX
All available foreign language supports: Chinese S (Simple), Chinese T (Traditional), German,
Japanese, Polish, and Spanish
The last two are primarily for the convenience of the delegation leaders to be used on the delegation
computer room.
The Linux environment includes for program development:
Rhide version 1.4.7.8, which uses the gcc compiler.
Freepascal ide version 0.9.1.
Gdb debugger version 4.18.
Ddd (Data Display Debugger) version 3.2: a graphical debugger frontend.
Emacs editor version 20.7.
Vim editor version 5.6.
. Binutils version 2.9.5.0: the GNU assembler, linker and binary utilities.
The respective standard manual and info pages are also installed.

Windows

The Windows environment includes for program development:

Rhide version 1.4.7.8, which uses the gcc compiler.

Freepascal ide version 0.9.1.

Gdb debugger version 5.0.

Turbo Pascal 7.0.

- Turbo C++ 3.0.

The Turbo tools are installed because the IDEs for the competition compilers, in particular Freepascal, may
have some problems. The Turbo tools, however, carry with them the DOS limitations, most importantly, the
memory is limited.
The Windows installation includes the standard Windows 98 SE installation, along with e.g. the MS-DOS
editor "Edit" (version 2.0.026) and the standard Microsoft Notepad and Wordpad.
The Windows installation includes a part of the Microsoft Office 2000, with e.g. Microsoft Word and some
multilingual support for Microsoft Office.
Gcc is installed as a part of the DJGPP packages, and the respective standard info files are also installed.
Rhide also comes with info files. Freepascal is installed as the "full" version.

Additional tools

Additional tools may be available for assisting the contestants with the tasks. All documentation about these
which does not reveal the nature of the tasks will be made available on the competition web pages in May.
The documentation also includes information about what, if anything, of the documentation may be
translated for the students to be available in the competition event.

There may be some messages or other material which will only be made available for translation along with
the task description in the respective GA meetings.

Competition Tasks

All of the tasks involve computations of algorithmic nature. The solution for each task is either a single
source file of a program to perform algorithmic computations or such a set of output data files, each file
related to some input information, that obtaining the output files involves computations of algorithmic
nature.

Whenever efficiency algorithmic computations is important, there will be at least one grading input where
inefficient program can also score some points.

Each task has a title and a short name. The short names are used to identify the tasks.

If you are working on Linux and, as an example, the tasks are called storage, rocket, and notes, then your
home directory has subdirectories storage, rocket and notes, and the task-related material is in the
respective subdirectories.

If you are working on Windows 98 and, as an example, the tasks are called storage, rocket, and notes, then
your computer has folders C:\ioi\storage, C:\ioi\rocket, and C:\ioi\notes.

Documentation for tasks where a program source file is requested as a solution

When a program source file of a function is required as a solution, then the program source provided by the
contestant must be in a single source file. The task documentation will specify
the input and output data format and value ranges,
the resource limitations for the computations (e.g. cpu time, memory),
possible other constraints to the program behaviour, and
the comment tags for the source code required by the grading system to identify the task and
programming language.

Documentation for tasks where output data files are requested as a solution

When a set of output data files is required as a solution, then the task documentation will specify

the structure of the input and output files.
In this case the input data will be in ASCII text files.

Input and output data

In all tasks, input and output data consists of a sequence of items. An item is a string of printable non-space
characters (ASCII code from 33 through 126). An item may represent an integer or a general string. This is
explained in the task-spefic documentation.

Items can be separated by a space or an end-of-line. The format of the input data will be specified in the
task specification.

The output data files consist of a similar sequences of items, and they should be formatted strictly according
to the task-specific instructions. The actual checking of data items is done by using the C++ streams in such
a way that extra whitespace (e.g. space) within a line is meaningless.

Practicing

You will be able to use the competition computers for practice in the periods that will be announced at the
competition site. Also, you must take part in the practice competition on Sunday, 15 July.

Curfew

A curfew will start at the start of a GA meeting where tasks for a competition day are chosen. During the
curfew the contestants are not allowed to communicate by any means with any people who attend this
meeting. Also, the contestants and the people taking part in the meeting must obey any instructions which
limit the area where they are allowed to stay. The people authorised to attend the meeting are not allowed
to communicate task-related information to other people before the end of the curfew.

A contestant breaking this rule may be disqualified from the competition. If some other person associated
with a national delegation breaks this rule, then all contestants of the respective delegation may be
disqualified from the competition. The curfew will be lifted on both competition days after the competition
has started.

Competition-time routines

Starting the competition

You are taken to the competition hall before the competition starts. A randomly chosen computer is
designated to each contestant (different for both competition days).

The computer is switched on and displays a menu, from which you may choose to boot up either Linux or
Windows 98. The competition envelope containing the task definitions and other necessary competition
information is in front of the computer. At the starting whistle, you may operate your computer and open
your competition envelope.

You do not need to log in for Windows 98. You should log in to Linux with

username: ioi

password: ioi

Questions

During the first hour of competition, you may submit written questions concerning any possible obscurities or
ambiguities in the competition tasks. The following reply to a question will be one of: "Yes", "No" or "No
Comment".

You must submit your question(s) in English or in your native language on the Question Form provided. If
required, your delegation leader will translate your question(s).

The Scientific Committee will answer every question submitted by the contestants. This may take some time.
Therefore, you should continue working while waiting for the answer to your question(s). You will not be
involved in discussion.

Assistance

You may ask the lab supervisors for assistance at any time. The supervisors will not answer questions about
the competition tasks, but will deliver your question forms, help you to find toilets and refreshments, and
assist in computer problems.

Printing

You will be able to get printouts by printing through a facility provided to you as a part of the competition
environment. The lab supervisors will take the prints to you. You may expect a small delay.

Backups

You will be able to make and retrieve backups through a facility provided to you as a part of the competition
environment.

Test execution

For problems, which require a program as a solution, you will be able to submit your solution along with an
input file for test execution. The test execution will be run on Linux, and it will consist of compilation, and
execution with the resource limitations for the particular task. You will be shown the output, the execution
time, and possible error messages. Test execution does not grade or backup your solution, and it does not
verify the correctness of the output.

Submitting solutions

You submit your solutions through a facility provided to you as a part of the competition environment. The
facility checks certain things about your submission. If your submission is source code, the facility will check
that it compiles and solves a simple test case. If your submission is a data file, the facility will check its
format.

If the checks are not passed, you will get an error message. If the checks are passed, the solution is
accepted for grading, and you will be informed about that. However, the actual grading is done separately
and you will not be informed about your score while the competition is running.

In case a contestant submits a solution for the same task several times, then the last submission which is
accepted by the facility will be used in the grading.

Ending the competition

You will be warned at 15 minutes (3 short whistles and a verbal announcement "15 minutes"), 5 minutes (2
short whistles and a verbal announcement "10 minutes") and 1 minute (1 short whistle and a verbal
announcement "1 minute") before the end of the competition. After the end signal (3 long whistles and a
verbal announcement "end of competition™), you must immediately stop working. Put the keyboard on top of
your terminal. Do not switch off your computer. You must not operate your computer or touch anything on
your desk. When you are told, you may leave the competition hall and you may take your competition
envelope contents with you.

Grading

The grading system evaluates the submitted tasks after the competition.
The evaluation forms and evaluation data will be made available to the delegations due to the schedule of

101 2001. Complaints about the scoring are to be submitted within a separately announced time to the
Scientific Committee.

For grading, the source files you have submitted will be re-compiled and executed under Linux using the
resource limitations specified for the tasks. The compiler options for Pascal programs are

-So -02 -XS

and the compiler options for C and C++ programs are

-0O2 -static

If your submission has succeeded, then the compilation is succesful and your program has managed to solve
some simple test case, but no more. In particular, it does not mean that your program would obey the
resource constraints given in the task description when different input parameter values are being used.

Other information

A contestant

trying to interfere with other contestants' activities,

trying to break the installations or evaluation facilities, or

trying to harmfully interfere with the running of the competition in any way
may be disqualified from the competition.
For submitting solutions, taking backups, and printing, the computers are connected in an internal network.
These facilities are arranged using a secure connection. You are not allowed to access the network for any
other purpose or with any other tools than the ones provided for the above purposes by the organisers. Even
sending a single 'ping' command is strictly prohibited. If the network does not seem to work, contact the lab
supervisors. Also, you are not allowed to make any material accessible to the network from your computer.
The network traffic is monitored and logged during the competition, and a contestant breaking this rule may
be disqualified from the competition.

Your programs
. are not allowed to access the network,
are not allowed to fork,
are not allowed to create files other than those required in the task definition,
are not allowed to attack system security or the grader,
are not allowed to attempt to execute other programs,
are not allowed to change filesystem permissions, and
- are not allowed to read filesystem information.
If your programs try any of this, you may be disqualified from the competition.

Jyrki Nummenmaa
Last modified: Tue Jun 26 23:00:00 EEST 2001

101 2001 Competition pages
Main | Competition rules | Programming environment
Evaluation | Task-related information | FAQ | Update history

Programming environment

General information
Hardware Linux
Windows

Gcece on Linux

Pascal on Linux
Gcce on Windows
Pascal on Windows

General

Please first check the general information about the competition programming environment from the
Competition Rules.

The main environment for the contest is Linux. Linux is available as a programming environment
(specifications below) and also the servers and evaluation (grading) runs on Linux.

In Beijing the majority of teamleaders wanted to have Windows available for the contestants. It is evident
that providing both of these two environments implies several problems. However, we provide the
contestants with dual-boot computers where you can program either in Linux or in Windows environment.
This year the evaluation is based on source-code submission and the evaluation system compiles the
submitted source code. As a consequence, also the programs written in the Windows environment are re-
compiled for evaluation in Linux (using the same compiler). This is something that all contestants using
Windows must be aware of.

Generally, we favour fairly standard operating system installations. There are four primary reasons why we
might want to modify the installations.

1. Hardware support. It may be necessary to upgrade some parts of the system to support the hardware. We
will know more of this once we learn about the hardware.

2. Compatibility between platforms. We want to have the same versions of the compilers on both platforms.
3. Security. In particular the Windows environment is a big risk for security. This might be partly helped by
changing the installation. Certain configurations will be changed on both platforms.

4. Installation size. If we can not get the broadcast install to work on the hardware, then, to enable network
install, we may want to cut down the sizes of the installations. It is as yet open whether we need to do this.
The compilers used in the competition are gcc for C and C++ programs and Freepascal for Pascal programs.
These were generally accepted by teamleaders in Beijing.

We hosted the Finnish national finals to try out the compilers, IDEs (development interfaces), source-code
evaluation, and the operating systems.

Generally, the installations are designed for the following main alternatives:

1. Pascal as the programming language, freepascal compiler, freepascal IDE.

2. C/C++ as the programming language, gcc compiler, rhide IDE.

3. Emacs (or vim), command-line compilation, a graphical front end "ddd" to debugging.

Option 3 is targeted primarily for Linux, although it is possible to use Windows Edit and command-line
compilation.

Hardware

Currently all hardware information is in the competition rules. Although we do not have any of the computers
at the moment, these are the specifications for the competition computers. We are expecting to get a test
lab by the end of March.

Linux

For Linux, we are using Debian installation release 2.2r2. The hardware might have bigger implications for
the choice of Linux installation than the choice of Windows installation. Also, we need to have the same
compiler versions as for the Windows platform.

We do not know the hardware for the competition yet, so we do not know what kernel and XFree versions
will be required. However, we are confident that we can make everything work based on Debian release
2.2r2. Debian's home pages are at http://www.debian.org.

You may want to learn about using Linux and do not want to install it. The GNU tools are in the core of the
Linux facilities, and you can obtain a much larger collection of them from the DJGPP package (see
Windows/gcc). A collection of GNU facilities can also be obtained from http://www.cygwin.com. This Cygwin
package has even more of the feel of Linux, as they are being used through the bash shell, which is common
in Linux systems. DJGPP is based on using the Windows DOS shell.

Windows

We are using Windows 98 SE, since it is simpler and smaller and easier to administrate than Windows NT or
Windows 2000 and has better hardware support than Windows 95. We expect support for the hardware to be
available in Windows 98 SE. You can get information about Windows from
http://www.microsoft.com/windows/.

Gcce on Linux

We use Gcc 2.95.2 which you can install as a part of the Linux Debian release 2.2r2. Version 2.95.2 is also
the official version announced at http://gcc.gnu.org

You can learn about the availability of various gcc versions through http://gcc.gnu.org. If you install a Linux
version and include development tools, then you are extremely likely to get a gcc version.

If you go to an ftp site which mirrors ftp.gnu.org, then you will find the 2.95.2 version and a whole lot of
other versions in something probably like /pub/mirrors/ftp.gnu.org/pub/gnu/gcc/

Pascal on Linux

You can get the Freepascal software through See http://www.freepascal.org, which shows a number of
mirror sites. They are also available as Debian packages through Debian mirror sites. We have installed the
full set of Debian packages.

Our current installation includes all the following packages:

fp-compiler_1.0.4-1_i386.deb 02-Jan-2001 12:40 646k

fp-docs_1.0.4-1_all.deb 02-Jan-2001 12:40 2.2M

fp-units-api_1.0.4-1_i386.deb 02-Jan-2001 12:40 99k

fp-units-base_1.0.4-_i386.deb 02-Jan-2001 12:40 200k

fp-units-db_1.0.4-1_i386.deb 02-Jan-2001 12:40 78k

fp-units-fcl_1.0.4-1_i386.deb 02-Jan-2001 12:40 824k

fp-units-gfx_1.0.4-1_i386.deb 02-Jan-2001 12:40 250k

fp-units-gtk_1.0.4-1_i386.deb 02-Jan-2001 12:40 290k

fp-units-misc_1.0.4-1_i386.deb 02-Jan-2001 12:40 161k

fp-units-net_1.0.4-1_i386 02-Jan-2001 12:40 23k

fp-units-rtl_1.0.4-1_i386 02-Jan-2001 12:40 526k

fp-utils_1.0.4-1_i386.deb 02-Jan-2001 12:41 673k

The Linux version of the ide is not a part of the official installation, but according to our information, it works.
We have also tested it ourselves and it has worked. You should be able to find it at a mirror site at the
directory

freepascal/snapshot/linux/

once you find the freepascal directory. The ide is available as tar package (linuxide.tar).

Gcec on Windows

The gcc compiler version we are using in the windows environment is gcc 2.95.2. This is also the official
version announced at http://gcc.gnu.org.

WARNING: If you install freepascal and gcc (e.g. as in DJGPP) in the same Windows installation, be sure to
have DJGPP in your path before freepascal, or gcc won't work. This seems to be because it finds cpp.exe
from the pascal binaries and then thinks that the pascal binary directory is the place for its compiler binaries,
which it subsequently fails to find. (This is just my guess - JN)

For windows, we are using the DJGPP. You can find out about DJGPP and downloading it from
http://www.delorie.com/djgpp/.

Our current installation includes the following packages:

v2/readme.1st - a readme file.

v2/faq230b.zip - a FAQ.

v2/djtzn203.zip - timezone files, not all of these are necessary, | think.

v2gnu/gcc2952b.zip - GNU C Compiler binaries and docs (including the docs for the C++ compiler).
v2gnu/bnu281b.zip - GNU Binutils, including as, the GNU assembler; Id, the GNU linker; and their docs.
v2/djdev203.zip - C header files and libraries, library reference, minimal development environment
(including assembly-level debuggers), DJGPP-specific utilities and their documentation. Required to

compile/link C programs.

v2gnu/txi40b.zip - Info, with this you can read GNU documentation.

v2gnu/gpp2952b.zip - GNU C++ compiler, the C++ header files and standard C++ class libraries, including
the STL, and their docs.

v2gnu/gdb500b.zip

v2gnu/mak3791b.zip - GNU Make program with its docs.

For installation, take also v2/install.exe.

To accompany these, we installed the rhide v. 1.4.7.8 (version by A. Pavenis) turbo-lookalike integrated
development environment (rhid1478b.zip), which was obtained from
http://www.lanet.lv/~pavenis/rhide.html.

Pascal on Windows

For Pascal at the Finnish competition, we installed Freepascal 1.0.4. It has its own IDE. Freepascal does not
seem to work too well with rhide with only a minimal effort to set it up.

See http://www.freepascal.org for obtaining a copy. If you install the full version w32104full.zip, you just
first unzip the file and run install.exe.

Jyrki Nummenmaa
Last modified: Wed Apr 5 10:00:00 EEST 2001

TASK OVERVIEW SHEET / DAY-0 (practice)

TASK Notes Rocket
Task material directory/Linux | ~/notes ~/r ocket
Task material directory/Win98 | C:\IOI\notes C:\IOI\rocket
Time limit per test 2 seconds -
Memory limit 32MB -
Number of tests 10 5
Points per test 10 20
Total points 100 100
Program header comment when | {
using Pascal PROG: notes
LANG: PASCAL
}
Program header comment when | /*
using C PROG: notes
LANG: C
*/
Program header comment when | /*
using C++ PROG: notes
LANG: C++
*/

Submission is accepted, if:

Communication foramt is
COorrect.

Fileformat is correct.

TASK OVERVIEW SHEET / DAY-1

TASK M obiles loiwari

Task material directory/Linux ~/mobiles ~/ioiwari

Task material directory/Win98 | C:\IOI\mobiles C:\IONioiwari

Timelimit per test 1 second 1 second

Memory limit SMB 32MB

Compiler optiong/C and C++ -02 -dtatic -02 —gatic

Compiler options/Pascal -S0 -02 -XS -S0 -02 —XS

Number of tests 20 25

Maximum points per test 5 4

Maximum total points 100 100

Program header comment when | { {

using Pascal PROG: maobiles PROG: ioiwari
LANG: PASCAL LANG: PASCAL
} }

Program header comment when | /* I*

using C PROG: maobiles PROG: ioiwari
LANG: C LANG: C
*/ */

Program header comment when | /* I*

using C++ PROG: mabiles PROG: ioiwari
LANG: C++ LANG: C++
*/ */

Submission is accepted, if:

The example test case is solved.

Gameisplayed according to the
rules—win, lose, or atie.

The opponent program for reactive tasks runs as a separate process, whose run time is not added to the run tir

TASK OVERVIEW SHEET / DAY-2

TASK Score Double
Task material directory/Linux | ~/score ~/double
Task material directory/Win98 | C:\IOl\score C:\IOl\double
Timelimit per test 1 second -
Memory limit 32MB -
Maximum compilation time 30 seconds -
Maximum sour ce code size 1MB -
Compiler optiong/C and C++ -02 —gatic -
Compiler options/Pascal -S0 -02 —XS -
Number of tests 20 10
Maximum points per test 5 1for casel; 11 for cases 2..10.
Maximum total points 100 100
Program header comment when | { -
using Pascal PROG: score
LANG: PASCAL
}
Program header comment when | /* -
using C PROG: score
LANG: C
*/
Program header comment when | /* -
using C++ PROG: score
LANG: C++
*/

Submission is accepted, if:

Gameisplayed according to the
rules- win or lose.

Thefileformat is correct.

