
IOI 2002
Yong-In, Korea Day1 Tasks

27.08.02 13:51 Page 1 of 3

�����

�

���	���
�����

�
SOLUTION
A naïve O(N3) time algorithm for the problem iterates through all O(N2) line segments
induced by the point set S, and determines how far each segment spacing can be extended to
either direction within the point set (O(# landings) = O(N)).

An efficient O(N2) time algorithm for the problem is based on an algorithm for finding an
equally-spaced collinear subset of a set. The algorithm works by “overlapping” all equally
spaced triples in order to determine all maximal equally-spaced collinear subsets. The
“overlapping” is performed by constructing an undirected graph where for each
equally-spaced triple (pA, pB, pC) we create nodes <A,B> and <B,C> and the edge (<A,B>,
<B,C>); connected components in this graph correspond to maximal equally-spaced
collinear subsets in the original set. Observe that a frog path is simply a linear chain of
connected nodes (with at least one edge and two nodes, meaning at least 3 flattened plants)
in this graph. Each node in this graph has degree at most two, so the edge set and vertex set
both have size O(N2). Hence we can find all maximal equally-space collinear subsets in
O(N2) time from the graph.

The only detail here is how to efficiently find the equally-spaced triples from which the
graph is created. The obvious method of iterating over all triples of flattened plants would
worsen the complexity to O(N3). If instead the field is stored as a two-dimensional array
(every plant has an entry) giving the identity of the landing on that plant (e.g., if the 100th
flattened plant were at (10,12), then the array value at (10,12) is 100), you can loop over
pairs of flattened plants pA and pB, and then look up pC from the array in constant time since
you know what the location of pC must be if it exists. This strategy takes O(N2) time but uses
O(field size) memory – in particular, it needs 5000*5000 entries of a short integer each, or
50MB. Because the above graph also needs O(N2) space to store it, this strategy
unfortunately would exceed the memory limit of 64MB. However, as this array is very
sparse, it may be stored in memory as a hash table, which in the expected case does not
affect the time complexity (but which in the worst case does). The third and best option is to
construct the graph in linear time and constant memory by sorting the locations (e.g., row
major, column minor) and keeping 3 pointers into the list (A, B, and C for pointing to pA, pB,
and pC, A<B<C) as follows; loop A over all values, and for each A march B and C down the
list, moving either B or C forward at each step so as to try to maintain as close to equal
spacing as possible; when exactly equal spacing is found, enter the nodes and edge into the
graph.

There is also an O(N2) dynamic programming algorithm to solve this problem, which is
plagued by the same memory problems as illustrated above. In addition to storing the
identity matrix described above, store another O(N2) matrix containing whose rows are
indexed by pA; along the row are N entries, one per plant pB giving the number of landings in
a candidate frog path which goes through pA and pA but which only uses points which sort
before pA in the ordered list (i.e., pretend the field ends at pA, and look for frog paths of any
length in that smaller field – the idea is to find partial frog paths which violate none of the
frog path conditions in the region of the field already examined). Assuming the table is
filled up to row A, row A+1 is filled by considering all O(N) flattened plants B before pA,

IOI 2002
Yong-In, Korea Day1 Tasks

27.08.02 13:51 Page 2 of 3

and if there is a flattened plant C such that A, B, and C are equally spaced, look up in the
array the number of landings in the candidate frog path through B from C, increment by 1,
and store as the Bth entry in the row for A. If C would be outside the field, then enter it as
having 2 flattenings. At the same time check to see if the next flattened plant (D) would be
outside the graph, and if so, you have a completed frog path. To efficiently determine C, the
same 50MB array as above is needed; a hash table can again be used, with no increase in
average-case time complexity, but an increase in worst-case time complexity.

TESTING

The test data contains 25 test cases. Most of data are initially generated by random function,
then they are modified by manual work.

Each test case has size N (the number of points) in the range between 10 and 5000. Among
25 test cases, 10 test cases have size N ≤ 1000. The remaining 15 test cases have size N ≥
2000. The detail on the test data is summarized in the following table.

Each test case is worth 4 points. A program which implements a cubic time algorithm can
solve the test cases within time limit such that their size N ≤ 1000. An implementation of
this algorithm should be able to get the first 10 test cases correct but will likely run out of
time on all other cases (scoring 40% of the points).

�
��������	
�
�	����������������

No points, (r*c) Description Solution
1 18, (6 * 7) Sample data in task 4
2 10, (10 * 10) Manually designed 5
3 25, (50 * 50) Manually designed 13
4 50, (10 * 10) Several Lines + random points 10
5 100, (20 * 20) modified random point set 10
6 300, (30 * 30) modified random point set 15
7 500, (55 * 55) Several Lines + random points 28
8 500, (100 * 100) Special case for no solution 0
9 1000, (100 * 100) Several Lines + random points 34

10 1000, (1000 * 1000) Several Lines + random points 250
11 2000, (50 * 50) Random (uniform) points 25
12 2000, (100 * 200) Several Lines + random points 33
13 2000, (1000 * 2000) Several Lines + random points 333
14 3000, (60 * 60) Uniformly random points 31
15 3000, (500 * 500) X shapes and random points 500
16 3000, (5000 * 1) Horizontal line 20
17 3000, (5 * 1000) Several Lines + random points 17
18 4000, (100 * 100) Random points (uniformly) 34
19 4000, (200 * 20) Very dense points set 200
20 4000, (1000 * 1000) Several Lines + random points 500
21 4000, (5000 * 5000) Several Lines + random points 311
22 5000, (100 * 100) Chess board style 100

IOI 2002
Yong-In, Korea Day1 Tasks

27.08.02 13:51 Page 3 of 3

23 5000, (1000 * 1000) Several Lines + random points 334
24 5000, (3000 * 3000) Irregular linear points 1000
25 5000, (5000 * 5000) Modified random points 72

BACKGROUND

The problem “The Troublesome Frog” is related to the problem for detecting spatial
regularity in images. Spatial regularity detection is an important problem in a number of
domains such as computer vision, scene analysis, and landmine detection from infrared
terrain images. The AMESCS(All Maximum Equally-Spaced Collinear Subset) problem is
defined as follows. Given a set P of n points in Ed, find all maximal equally-spaced,
collinear subset of points. Kahng and Robins[1] present an optimal quadratic time algorithm
for solving the AMESCS problem.

Reference
[1] A B. Kahng and G. Robins, Optimal algorithms extracting spatial regularity in

images, Pattern Recognition Letters, 12, 757-764, 1991.

�

