
Task Description
IOI 2004
Athens
Greece artemis

16.09.04 Page 1 of 1 artemis

Artemis
SOLUTION
Observation: Let f(x, y) be the number of trees below and to the left of (x, y). Then the
number of the trees in the rectangle bounded by t1 and t2 is

f(t1.x, t1.y) + f(t2.x, t2.y) - f(t1.x, t2.y) - f(t1.y, t2.x) + 1

if t1 lies below and to the left of t2 (or vice versa), and a similar formula if not.

1. Trivial algorithm. Loop over all rectangles, and loop over all trees to count those
inside the rectangle.

O(n3)

2. Use dynamic programming to compute f(t1.x, t2.y) for every t1, t2. Then evaluate
all rectangles using the formulae.

O(n2), but also O(n2) memory

3. Place an outer loop t over the trees, representing one corner of a potential
rectangle. To evaluate rectangles with corners at t, one only needs f(t.x, *) and f(*,
t.y). These can be computed with DP as in algorithm (2), and requires only linear
memory.

O(n2)

4. Sort the trees from left to right, and then process them in that order. As each new
tree (say tn) is added, it is inserted into a list of current trees that is sorted
vertically. From this information one can calculate f(t.x, tn.y) and f(tn.x, t.y) for
every t to the left of tn, in linear time. Then one can evaluate all rectangles with
one corner at tn. This ends up being very similar to algorithm (3).

O(n2)

5. Algorithm (1), but with optimised counting. As a pre-process, associate a bitfield
with each tree representing which trees lie below and to the right, and a similar
bitfield for trees below and to the left. The trees inside a given rectangle may be
found as the binary AND of two bitfields. A fast counting mechanism (such as a
16-bit lookup table) will accelerate counting.

O(n3) and O(n2) memory, but with low constant factors


