Artemis

SOLUTION

Observation: Let $f(x, y)$ be the number of trees below and to the left of (x, y). Then the number of the trees in the rectangle bounded by t_{1} and t_{2} is
$f\left(t_{1} \cdot x, t_{1} \cdot y\right)+f\left(t_{2} \cdot x, t_{2} \cdot y\right)-f\left(t_{1} \cdot x, t_{2} \cdot y\right)-f\left(t_{1} \cdot y, t_{2} \cdot x\right)+1$
if t_{1} lies below and to the left of t_{2} (or vice versa), and a similar formula if not.

1. Trivial algorithm. Loop over all rectangles, and loop over all trees to count those inside the rectangle.
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
2. Use dynamic programming to compute $f\left(t_{1} \cdot x, t_{2} \cdot y\right)$ for every t_{1}, t_{2}. Then evaluate all rectangles using the formulae.
$\mathrm{O}\left(\mathrm{n}^{2}\right)$, but also $\mathrm{O}\left(\mathrm{n}^{2}\right)$ memory
3. Place an outer loop t over the trees, representing one corner of a potential rectangle. To evaluate rectangles with corners at t, one only needs $f\left(t . x,{ }^{*}\right)$ and $f(*$, t.y). These can be computed with DP as in algorithm (2), and requires only linear memory.
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
4. Sort the trees from left to right, and then process them in that order. As each new tree (say t_{n}) is added, it is inserted into a list of current trees that is sorted vertically. From this information one can calculate $f\left(t . x, t_{n} \cdot y\right)$ and $f\left(t_{n} \cdot x, t . y\right)$ for every t to the left of t_{n}, in linear time. Then one can evaluate all rectangles with one corner at t_{n}. This ends up being very similar to algorithm (3).
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
5. Algorithm (1), but with optimised counting. As a pre-process, associate a bitfield with each tree representing which trees lie below and to the right, and a similar bitfield for trees below and to the left. The trees inside a given rectangle may be found as the binary AND of two bitfields. A fast counting mechanism (such as a 16-bit lookup table) will accelerate counting.
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ memory, but with low constant factors
