Hermis

An $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm: Let $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ be the points where $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0,0)$ is the starting point. We will compute $A[i, j]$ and $B[i, j]$ where $A[i, j]$ is the cost to align with the i first points and end up at $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)$ and $\mathrm{B}[\mathrm{i}, \mathrm{j}]$ is the cost to align with the i first points and end up at $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{i}}\right)$. We have
$A[i+1, j]=\min \left\{A[i, j]+d\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{[i+1]}\right], \mathrm{B}[\mathrm{i}, \mathrm{i}+1]+\mathrm{d}\left[\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right]\right\}$
$B[i+1, j]=\min \left\{B[i, j]+d\left[y_{i}, y_{\{i+1\}}\right], A[i, i+1]+d\left[x_{i}, x_{j}\right]\right\}$
The final answer is $\min _{\mathrm{j}}\{\mathrm{A}[\mathrm{n}, \mathrm{j}], \mathrm{B}[\mathrm{j}, \mathrm{n}]\}$
Time $O\left(n^{2}\right)$

