Criterion C: Development

Techniques Used

Graphical User Interface (GUI)

The software I've created is entirely focused on the user interface. This results in a complex
relationship between adding notes to the GUIL. The addNote() method shown below is
responsible for both the graphical input of a note, as well as adding a note to their respective
LinkedList.

public woid addNote({int duration, int ¥, String img, String i) {

MusicNote mn = null;
pitchSelected = basePitch + octaveMultiply:

if (trebleBeats + duration > 8 || bassBeats + duration > 8) |

Syatem.out.println({"You cannot enter that note here.");

T
switch ({duration) |
case I:
if (checkOctave '= "" g& checklNote != "") |
Note n = new Note (pitchSelected, EN):
Play.midi{n);
if ([pitchSelected > 72 || pitchSelected > 52 && pitchSelected < 60) {
mn = new Eighthlote (pitchSelected, setYCoordinate (pitchSelected)+33);
mn.3etImage (i) ;
] else
mn = new Eighthlote (pitchSelected, setY¥Coordinate (pitchSelected)+l);
mn. setImage (img) ;
I
} else {

Note n = new Note{el, EN):

Play.midi(n);

mn = new EighthNote (pitchSelected, 221):
mn.setImage (img) ;

case 2:
if (checkOctave '= "" gz checkNote != "") |
Note n = new Note{pitchSelected, EN):
Play.midi(n);
if ([pitchSelected > 72 || pitchSelected > 52 && pitchSelected < 60) |
mn = new Cuarterlote (pitchSelected, set¥Coordinate(pitchSelected)+33):
mn.setImage (i) ;

} else |
mn = new QuarterNote (pitchSelected, set¥Coordinate(pitchSelected)):;
mrn.3etImage (img) ;
}
Lselsel |
Note n = new Note{a0, EN);
Play.midi(n);

mn = new QuarterMNote (pitch3elected, 220);
mn.setImage (img) ;
I

break:

case 4:
if ([checkOctave '= "™ && checkNote = "") |
Note n = new Note(pitch3elected, EN);
Play.midi {n});
if [pitchSelected > 72 || pitchSelected > 52 && pitchSelected « 60) {
mn = new HalfNote (pitchSelected, set¥Cocordinate (pitchSelected)+33);
mn.setImage (i) ;
} else |

mn = new HalfNote (pitchSelected, set¥Coordinate (pitchSelected));
mn.setImage (1mg) ;

t
} else |

Note n = new Note (60, EN);:
Play.midi {n};

pitchSelected = 60;
mn = new HalfNote (pitchSelected, 220);
mn.3etImage (img) ;

}

break;

case B:

if ([checkOctave = "™ g& checkNote '= "") |
Note n = new Note({pitchSelected, EN);
Play.midi{n});

mn = new WholeNote (pitchSelected, setY¥Coordinate (pitchSelected)+16);
mn. setImage (img) ;
= [
Note n = new Note (60, EN);
Play.midi(n};

mn = new WholeNote (pitchSelected, 23&);
mn.setImage (img) ;
1

break:

[used multiple conditional statements, including if statements nested within switch
statements in the above method. My justification for doing so is to allow for flexibility for the
user; for example, the user will be able to add any kind of note to the graph by calculating certain
coordinates using the conditional statements. The switch statements can determine the image
file, pitch, rhythm, and graphical coordinates of any note. Thus, the inclusion of this complexity is
useful for the functionality of the software.

Inheritance

MusicNote is an important superclass in this application. Inheritance is essential for the software
because it reduces redundancies in the code for several important methods.

Superclass

ral
L O WholeMote

| HalfMote

v EighthiNote

) Quarterhote

Subclasses

Essentially, the MusicNote superclass contains the necessary fields for its subclasses. This is
justified because all MusicNote classes will have the same 7 fields, but with different values
being passed into them. This reduces the need to reuse code, and thus reduces the risk of bugs
from inconsistent code.

Data Structures

Because of the nature my application, and the use of the jMusic external library, I have used two
main data structures: LinkedLists and Vectors.

Although jMusic is a musical external library that structures music data in a highly organized
fashion, it is also considerably outdated, starting out in the late 1990s. As a result, the essential
classes of jMusic, such as Phrases, Parts and Scores, can only hold Arrays or Vectors as a data
structure. Furthermore, Note objects in jMusic can only pass parameters in pitch frequency and
rhythm value. This is not entirely applicable to the nature of my application, because my
MusicNote objects require other arguments.

1 The following Vect _ will hold jMusic Note —-| Vectors for jMUSiC Note Dbjects
. Vector trebleJM = new Vector();

Vector bassdM = new Vector(); [are initialized in the World.

2 public MusicStaff()
.
{

super (1000, 600, 1):
setupInventory () ;
totalTrebleBars = 0;
totalBassBars = 0;
trebleBeats = 07

bassBeats = 05

upperStave = false; The World’s constructor
lowerStave = false; & = e

organizes jMusic classes to set
e e e B L) up an empty music file for the
phraseB = new Phrase(0.0);
parth = new Part(); user to make inputs.

partB = new Part():;
score = new Score();

parth.addPhrase (phrasel) ;
partB.addPFhrase (phrazseRB) ;
score.addPart {parth);
score.addPart {partB) ;

When the user plays the existing melody, the

vectors of Note objects are added to the jMusic
public void playMelody() {

3' phrasel.addNotelist (trebledM, Izlse); th‘se CIaSS.
phraseB.addNotelist (bassdM, false);
Now the notes are part of the music, and the

: application plays this as a MIDI sound file.

As a result, my justification for also using LinkedLists is that my software also requires graphical
input. This is why the MusicNote class contains more than just a pitch and rhythm argument, but
arguments for an image file and XY coordinates as well.

Ultimately, they are both appropriate data structures for my application, due to the dynamic
ability for the data structure to grow. This is necessary because it is unknown how many notes a
user will add; composing a piece of several eighth notes requires more elements to be added to a
LinkedList than a piece of several whole notes.

File Input and Output

In order to save the current melody to file, MusicNote objects are saved into a #-delimited list on
a text file.

FQ). ecloe
WE©E)E)E)(E)

—H—..!:

e o

| |
| |
| o
)

2,
4
4

Aside from a few graphical issues, the above screenshot showcases an excerpt of Twinkle
Twinkle Little Star. Below visualizes how the melody is saved to file.

public class MusicNote extends Actor implements JMC

{
%’ nt pitech;

ouble rhythm;

tring image;

%e_}m format View I;Ielp "’Ib'emNOTﬂ_ad =

[Bolf2. 0¥1. 6statt

quarter.pngffstaff flip ;quarter. pngﬁ?ﬁ@ ~

60#2.0#]1.0#staff
67#2.04#1.08#staff
67#2.0#1.0#staff
69#2.0#1.0#staff
69#2.0#1.0#staff
67#4.0#2.0#staff
65#2.04#1.0#staff
65#2.0#1.0#staff
64#2.04#]1.08staff
64#2. 041 . 0#staff
62#2.041.8#staff
62#2.04#1.0#staff
6@#4. 042 . Bd#staff
A8#4.042.08staff
S52#4.04#2 . B#staff
53#4.042 . 0#staff
S2#4.0#2.0#staff
Se#4.042 O#staff
A48#4.042.0dstaff
53#2.041.04staff
S5#2.041.08staff
52#2.0#1.0#staff
48#2.041.08staff

quarter.pngi#staff flip quarter.png#258#220
gquarter.pngi#staff flip quarter.pngi30@#200
quarter.pngi#staff flip quarter.png#35S6#2008
gquarter.png#staff flip quarter.png#425#195
guarter.png#staff flip gquarter.png#475#195
half.png#staff flip half.pngR575#200
guarter.png#staff flip quarter.png#650#205
quarter.png#staff flip quarter.png#708#205
quarter.pngistaff flip quarter.png#750#210
quarter.png#staff flip quarter.png#B8884210
guarter.pngi#staff flip quarter.png#B75#215
quarter.png#staff flip quarter.png#925#215
half.png#staff flip half.pngfl825#2208
half.png#staff flip half.pngR250#303
half.png#staff flip half.png#250#293
half.png#staff flip half.pngh3Se#i2l
half.png#staff flip half.pngid75#293
half.png#staff flip half.png#575#298
half.png#staff flip half.png#700#303
guarter.png#staff flip quarter.png#750#321
quarter.png#staff flip quarter.png#808#316
quarter.png#staff flip quarter.png#B875#293
quarter.png#staff flip quanter.png#925#39ﬂ

Each note displayed on the GUI is saved as a MusicNote object, each with a specified pitch,
duration, etc. This is saved to a text file using a #-delimited list, which separates each of the
object’s properties. Thus, each line on the text file represents the data for a single note.

void write() {
MuzicNote[] tArray = trebleNotes.tolrray(new MusicNote[trebleNotes.size()]):
MusicNote[] bArray = bassHotes.tolArray(new MusicNote[bassNotes.size(}]1):

try {
writer = new PrintWriter(new FileWriter (FILE_PATH));
for (int i = 07 i < tArray.length; i++) {
writer.println{tArray[i].gectPitch({} + "#" + tArray[i].getDuration() + "#" + tRArray[i].getBhythm({} + "#"
+ thArray[i].getImg() + "#" + tArray[i].getInvert{) + "#" + thArrav[i].getXCoord() + "4" + thArrav[i].get¥Coord()):
1

writerB = new PrintWriter(new FileWriter(FILE PATH BASS)):
for (int j = 0; j < bArray.length; j++] {
writer.println{bArray[j].getPitch{) + "#" + bArray[j].getDuration{) + "#" + bArray[j].getBhythm{) + "#"
+ bArray[j].getImg{) + "#" + biArray[j].getInvert{) + "#" + bArray[j].getXCoord() + "#" + bArray[]].getYCoord()):

}
} catch (Exception e) {|
e.printStackIrace();

}

writer.close():;

System.out.println("Saved successfully.");

Following up on the use of data structures, the LinkedLists are converted into Arrays in the
write() method in order to properly write to a text file. This makes it easier to copy note
properties through a for-loop.

froid read() |
LinkedList<Muaicloter readNotes = new LinkedList():
String nextLine;
String[] splitline = new String[&]:
int count = 0;

try {
reader = new BufferedReader (new FileReader (FILE_FATH)):

nextlLine = reader.readLine();
while (nextline != null) {
splitline = nextline.split{"#"):
MusicHote mn = null;
int pit = Integer.parselnt{splitline[0]);
double dur = Double.parseDouble (splitLine[1]);

System.out.println{dur);
int xC = Integer.parselnt (splitLine[5]);
int ¥C = Integer.pargelnt(splitline[&]):

Finally, the read() method splits each line of a text file into the appropriate fields of a MusicNote,
and once again uses an algorithm similar to the addNote() method to add MusicNote objects to
the GUL

Debugging

One method of debugging that I used in Greenfoot is the use of the Greenfoot Object Inspector.
This tool allows me to check the state of an object’s fields at any point when the software isn’t
running. For example, this has helped me solve problems with adding notes to the GUI with
correct coordinates, by simply inspecting a MusicNote object’s various coordinate-related fields.

(2)(3)@)(s)
(AWE)(IE)(FI(E

quarternoteZ ; QuarterNoke

Istaff quater.png"

'I:aF Flip quarter‘pnq'

2

Show static Fields

Third-Party Tools

Greenfoot

Greenfoot, using the Java programming language, acts as my main platform for development. This
is justified because it provides me with a graphical user interface to work with, which is essential
for the nature of the software, which requires a visualization of sheet music.

In addition, it is a platform and language that uses object-oriented programming (OOP). This is
also justifiable by the use of MusicNote objects as the core data structure of the software.
T@;equwuskpmjm

e amm - 1 o L in

-

Scenario Edit Controls Help

[Share...]

—_

O ©o0o0o0 [
0010101660

[
»

Actor
B B
| .} Eighthiote

‘O WholeNote

*

2

‘ (o] [rn] [(©rest | e D — ‘ [

jMusic

Greenfoot: Preferences = = “

Editor | Key Bindings | Miscellaneous | Interface Libraries

User Libraries

Status Location Add

Delete
Adding the jMusic library to Greenfoot

9 sample - olEN 3

! Greenfoot: MusicProject - o HEM|
e Sceans Ean_ Conres iy
Comgite Unss Cut Copy| Paste Find | Clese wrce Cooe v [swe.
L
'
£ » .
»
< > > Mt > Run Qe Speed
lcunmw-mm-:...nm ”:‘ ok
. Complied code plays the note when run
Testing an Actor to play a note

[have used jMusic, an external Java library for composing music, and my justification is that
jMusic allows for an efficient way to play music notes, and is crucial for a large number of the
structuring of musical data in the software. An example is in the playMelody() method below,
which adds a Vector of classes to a jMusic Phrase class, which therefore allows for easy playback.

public void playMelody () |
phrasel.addNotelist (trebledd, falae):
phraseB. addNotelist (bassdM, false);

Play.midi {acore);

In addition to using the jMusic library for the composition of music, I also used the help of several
tutorials and reference materials from the jMusic creator, Andrew R Brown, to aid in the
structure of music data in my software.

Computational Thinking

Thinking Procedurally

The software follows a procedure in the creation of data structures. When a note is added to the
staff, it's pitch and image file must be identified, its coordinates calculated, and finally, all of this
must be updated to the vectors to be saved for future purposes.

Thinking Logically

[have used logical thinking primarily in the functionality of adding notes to the GUI. For example,
when the user selects “C”, it is expected that the pitch of the note to be added will be one octave of
C from 2 to 5.

The software is also able to logically decide where to place a new note, largely through the use of
“if-then” statements. For example, if the selected letter is D and the selected octave is 4, then the X
and Y-coordinates of the new note should be placed accordingly.

int current = selectors.getPitchi):
int spaces = selectors.getSpaces();

if (current >= 72 && current < B4} [
yPos = y¥PoaS - spaces:

} #lse if {current >= 60 && current < 72) |
vPo3s = yPo3d - spaces;

} #lse if [current >= 48 && current < 60) |
vPos = yPoa3 - spaces;

} else if [current >= 36 && current < 48) |
yPos = yPos2 - spaces;

1

if (isHalfComplete = true) {
vPos = yPo3 + 215;
1

return yPoa;

Thinking Ahead

Prior to the development stage, I thought ahead by using a top-down approach to designing the
application. In this way, [have created a foundation of necessary functionalities for the software,
as well as plans in how to achieve them.

In the development stage, I thought ahead by considering that not every user of this software will
input the same number of notes. Because of this, a fixed data structure such as an array is not as
suitable as Array Lists or Vectors. The vector will allow a minimum of 8 notes, to a maximum of
64 notes on one musical staff or array.

10

Thinking Concurrently

Concurrency occurs during the playback of music. Because of the implemented data structure, the
music is played back as an entire jMusic Score, which includes all notes in the composition,
instead of looping and playing each individual note. This results in a more efficient way of playing
the music.

Thinking Abstractly

The data structure for this software requires thinking in an abstract fashion, particularly through
the use of jMusic classes, abstracting a piece of music into Notes, Parts, Phrases and Scores.

Word Count: 1190

11

