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Abstract. The paper considers supervised learning algorithm of nonlinear 
perceptron with dynamic targets adjustment which assists in faster learning and 
cognition. A difference between targets of the perceptron corresponding to 
objects of the first and second categories is associated with stimulation strength. 
A feedback chain that controls the difference between targets is interpreted as 
synthetic emotions. In a population of artificial agents that ought to learn 
similar pattern classification tasks, presence of the emotions helps a larger 
fraction of the agents to survive. We found that optimal level of synthetic 
emotions depends on difficulty of the pattern recognition task and requirements 
to learning quality and confirm Yerkes-Dodson law found in psychology.  
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1   Introduction 

It is commonly admitted in psychology that emotions are an evolutionary mechanism 
important for learning and survival, adaptation, perception, evaluation, reasoning, 
memory and decision making [1- 5]. Simililar conclusions have been obtained while 
investigating “computer emotions“ [6-9]. Some computer scientists claim that 
feedback chains could be interpreted as synthetic emotions. So far most work was 
performed to analyse symbolic reasoning based algorithms. It was found that 
feedback chains could be useful for faster learning and cognition [8-9].  

One may hope that training speed of connectionist based learning systems is also 
affected by synthetic emotions. There exists a large amount of neural networks 
literature (mostly dating from the late 80s and early 90s) which addresses rates of 
learning with backpropagation algorithm. The speed of the algorithm can be 
significantly enhanced by using adaptive learning rate, η, and momentum [10- 12]. 
Dynamical change of η is widely used to control back propagation training process of 
multilayer perceptron (MLP) (see e.g. [13]). The training speed, a type of the 
classification rule obtained and generalization error can be affected also by input data 
scaling, preliminary data transformations and a noise injection to training input data 
(see e.g. reviews [14, 15, Chapter 4]). For a general introduction into artificial neural 
networks, training speed and a generalization error problems see e.g. [15 -17].  

In [18] it was demonstrated that training speed of the single layer perceptron (SLP) 
based classifier depends on difference s = |t1 - t2| between desired outputs, t1, t2, 
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corresponding to two diverse pattern classes. The training speed was measured as a 
number of training epochs required to train SLP. It was shown that while varying 
difference s, called stimulation, from 0 to 1 (if sigmoid activation function is used) the 
number of training epochs required to achieve a priori fixed classification error, Pgoal, 
decreases at first, saturates and then starts increasing. It is Yerkes-Dodson (YD) law 
found in psychology [19, 20].   

Up to now in psychology there is no unique definition of emotions. Significant role 
of emotions in evolution and adaptation suggests that there must be more than one 
mechanism for generating them [4]. From a variety of possible definitions of 
emotions, in present paper we relate synthetic emotions with training speed of the 
single layer perceptron used to solve pattern recognition task. We extend dynamic 
parameters’ adjustment to target values and associate synthetic emotions with 
dynamic changes in s, the stimulation. We suppose that organization of the feedback 
chain assists in an increase in the stimulation if supervised learning was successful. 
We assume also that the feedback decreases the stimulation if learning was 
unsuccessful. This process may be called self-stimulation, reinforcement [16].     

Our objective is not to investigate ways how to increase learning speed of back 
propagation algorithm. Our aim is to reveal principal mechanisms of interpretation of 
self-stimulation as synthetic emotions in connectionist learning systems. Global 
models could help in understanding factors affecting learning process in humans, 
societies and machines. They could offer to cognitive psychologists, sociologists and 
computer scientists one more model. In future they would assist in creating a variety 
of imitation situations for detailed studies of human and animal behaviors, improving 
strategies and algorithms to train single robots and groups of them.  

To achieve this goal we look for the simplest model as possible. We selected a 
nonlinear SLP and a gradient descent supervised learning algorithm. In spite of 
simplicity of the mathematical model, in point of fact, a role of synthetic emotions on 
efficiency of connectionist learning systems was not considered so far.  

 The paper is organized as follows. Section 2 gives main terms and notations used 
in SLP training. In Section 3 we consider training algorithm with the feedback chain 
from a point of view of synthetic emotions: if classification error is decreasing, the 
stimulation level is increased, if classification error is increasing, stimulation is 
reduced. We show that such simple feedback chain, the synthetic emotions, support 
faster training. The dependence of training speed on level of emotions can be 
described by Yerkes–Dodson law [19, 20] too. Section 4 considers a situation where 
there are a large number of similar artificial agents that ought to learn changing 
pattern classification tasks. We show that presence of emotions helps larger fractions 
of agents to survive, i.e. to learn to solve the task in a priori fixed number of training 
iterations. Section 5 contains discussion and suggestion for future research work. 

2   Training Peculiarities of the Single Layer Perceptron 

Classical approach in adaptive learning is rooted in psychology, going back to early 
work of Thorndike [21] on animal learning and that of Pavlov [22] on conditioning. 
Here learning takes place through a process of punishment and reward with the goal 
of achieving a highly skilled behavior. In artificial intelligence, the learning is 
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performed through continued interaction with the environment in order to minimize a 
scalar index of performance, a fitness (cost) function. To explain the principal trends, 
in present paper we start the analysis with the simplest model purposely. In order to 
explain a sense of our analysis, below we will present necessary definitions and show 
fundamental feature of gradient descent training: the weights of the single layer 
perceptron are increasing and gradually start slowing down the speed of training 
process. The weights increase is principal importance and a novelty of our analysis.  
    In our formulation, objects (situations) to be classified to one of the categories are 
described by input feature vectors, x = (x1, x1, ... xp). The perceptron calculates a 
weighted sum of inputs, sum = w1×x1+ w2×x2+ … + wp×xp +  w0.  A set of p values, w1, 
w2,… , wp, is called a weight vector, w, and  w0 is a weight threshold value. We will 
use vector notation sum = w×x + w0. Very important essential of the perceptron is 
transfer function. Weighted sum, sum, is supplied to nonlinear element that calculates 
output of the perceptron as a non-linear function of sum. As an example one can 
consider sigmoid function, output=1/(1+exp (- sum)). If sum = 0, output = 0.5 (middle 
value). If sum is large negative, output is close to 0. If sum is large positive, output is 
close to 1. Note that a slope of function output = f(sum) is the highest where sum=0. 
If sum moves toward ± infinity, the slope diminishes and approaches zero [24, 25].  

In order to use SLP practically one needs to know coefficients w0, w1, ... , wp. To  
find the coefficients, we utilize training data called a training set, the vectors of the 

categories A and B: (1)

1
x , (1)

2
x , … , (1)

1N
x  from A and (1)

1
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x  from B. In 

perceptron training, we require that for class A output ought to be close to a priori 
selected target, t1. For another class, B, we have to choose another value, e.g. t2=1- t1 
[14, 15, 23]. Traditional algorithm used to train SLP is back propagation, where 
usually a sum of squares cost function, cost, is minimized, 
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where  w  is unknown p-variate weight vector, w0 is a bias term, both to be found during 

training process,  t j
i( )

  is a desired output (a target) of the perceptron if vector x j
i( )  is 

presented to its input.  

    In this paper we consider symmetric targets, (1)

jt =0.5–0.5s, (2)

jt =0.5+0.5s,  (0 < s ≤ 

1). If parameter s is close to 0, we have similar target values. If s is close to 1, targets 
(1)

jt and  (2)

jt are close to boundary values of sigmoid activation function 

f(sum)=1/(1+exp(-sum)), i.e. 0 and 1. Thus, parameter s is interpreted as the strength 
of training signal, the stimulation. During training (adaptation) process, new vector, 
w(t+1), is equal to the previous one, w(t), plus a correction term: 

 

  w(t+1)  = w(t)   + t
ijCT ,   (2) 

 

where t
ijCT = - η × (t j

i( ) - f(sum)× ( ( ) / ) ( / )f sum sum sum∂ ∂ × ∂ ∂w  is the correction term, η 

is called learning rate (step) parameter, t j
i( ) - f(sum)  is an error signal − a difference 
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between the desired and actual outputs of the perceptron, sum = w’ x j
i( )  + w0,  

( ) /f sum sum∂ ∂  is the derivative of the activation function and (p+1)-dimensional 
vector ( ( ) / ) ( / )f sum sum sum∂ ∂ × ∂ ∂w is called a gradient.  
    If the weights are small, the gradient, ( ( ) / ) ( / ),f sum sum sum∂ ∂ × ∂ ∂w  is large. 
Simple algebra shows that when the weights are large, the gradient becomes small. 
During training, the magnitudes of the weighs are increasing and affect properties of 
the cost function [15, 25]. Moreover, with an increase in the magnitude of the 
weights, the gradient is decreasing towards zero. It means that in situations when the 
agent (the perceptron) has learned to solve its task properly and the weights are 
already large, due to the large weights the perceptron is unable to re-learn a new 
task quickly. 

Two parameters, the learning rate parameter, η, and a difference between desired 
outputs, t1, t2, of the perceptron, s = |t1 - t2| can be utilized to control the training 
process. We are increasing η or s by multiplying/dividing these parameters by 
positive scalar γ if training was successful/unsuccessful during ninertia training epochs. 
We interpret parameter γ as self-stimulation or synthetic emotions. We remind that 
the self stimulation model is only one definition of emotions from a variety of 
possible ones. We will show that parameter γ affects training speed. Training speed is 
measured by a number of training epochs required to achieve a goal, Pgoal, an a priori 
defined classification performance. 

3   Influence of Self-stimulation on Speed of Training Process   

In order to investigate the feedback chains, we consider simple adaptation model and 
perform simulation studies utilizing uncomplicated data – two bi-variate Gaussian 
classes with mean vectors µ2 = - µ1, unit variances and correlation between the 
variables ρ=0.7. In this model, three parameters control η and s: multiplication factor 
γ, sensitivity parameter ∆ (∆ > 1) and delay (inertia) ninertia after which correction of η 
or s is made. The parameter, γ, indicates relative increase or decrease of learning step, 
η, or stimulation parameter, s, if training was effective or ineffective during ninertia 
training epochs.  Let ψ = cost(t) / cost(t-ninertia) be a ratio of current cost (1) with 

previous cost value calculated ninertia epochs before. Parameters η or s are multiplied 
by factor γ, if ψ < 1/∆. The parameters η or s are divided by factor γ, if ψ  > ∆. 

Otherwise, nothing is changed. In present paper, we report results obtained when 
ninertia = 1 and ∆= 1.01. In analysis of dynamic learning step change, at start, we select 
initial learning step value, η0.  

 

Dynamic change of learning step, η. Results of the experiments with three Pgoal 
values (0.003, 0.01, 0.03) and two starting learning step values, 0.1, and 125, are 
presented in Fig. 1 (stimulation s=1). Three graphs obtained for η0=0.1 indicate that 
dynamic change of learning step, η, speeds up training process. In spite of the fact 
that we started training from small initial η value, feedback chain results that 
parameter η grows very quickly and compensates exponential decrease of the gradient 
caused by the gradual increase of the weights magnitudes.. If starting learning step is 
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small (e.g. η0=0.1), at the very beginning we do not have notable decrease of the cost 
(1). Due to high value of sensitivity parameter (∆=1.01) parameter η remains 
unchanged for a long time. Training process remains very slow.  If starting η value is 
too large (e.g. η0=125), immediately after the first iteration we have very large change 
of the weight vector and a saturation of the cost function. Learning becomes slow and 
unstable. In certain cases, learning even stops (graphs 1b and 2b in Fig. 3).  
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Fig. 1. A number of training epochs required to achieve Pgoal as function of dynamic change of 
learning step: 1 - Pgoal = 0.004; 2 - Pgoal = 0.01; 3 - Pgoal = 0.03. Almost non-overlapping 
classes, µ1 = (0.6 2.4); wstart = [0.08 1 2]. Curves marked by “a” start training from η0=0.1 
(stable training) and that marked by “b” – start from η0=125 (non-stable training).  

 

    We see that dynamic η change speeds up training process. In MLP training, it was 
used primary to help climb out from false local minimum [12, 13, 15, 17]. Dynamic 
η change is useful if a priori we do not know proper value of learning step parameter. 
Moderate dynamic η change assist in overcoming large weights effects if nonlinear 
soft-limiting activation function is used. We see also that sometimes dynamic η 
change could become dangerous. Therefore, we conclude that dynamic η change is 
suitable, however, sometimes imperfect model of synthetic emotions. 

 
Dynamic change of stimulation, s. For the start, relatively small stimulation value 
(sstart = 0.002) was selected, i.e. t1 = 0.499, t2 = 0.501. In Fig. 2 we have a number of 
training epochs required to achieve Pgoal as a function of parameter γs, dynamic change 
of stimulation strength (η=2.0; three values of Pgoal and two values of starting weight 
vector, wstart). In both experiments with different initial weights, position of starting 
decision boundary was the same, only magnitudes of the weights differed. To examine 
situations where large perceptron’s weights start slowing down the training speed, 
almost non-overlapping pattern classes with small classification error were 
considered.  
    In second experiment, components of the initial weight vector, wstart, w0, were 1.5 
times larger as in the first one. For that reason, at the very start we had larger sums, 

sum= wstart × x j
i( )

+ w0. Consequently, the gradients turned out to be smaller at the very 
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start of training. Consequently the training process became slower. Graphs in Fig 2ab 
indicate that in training with larger initial weights, we need higher number of training 
epochs (the learning task becomes more difficult).  
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Fig. 2. A number of training epochs required to achieve Pgoal as a function of dynamic change 
of stimulation strength, γs: 1 - Pgoal = 0.004; 2 – Pgoal = 0.01; 3 –  Pgoal = 0.03; Almost non-
overlapping pattern classes, µ1 = (0.6 2.4); a) – wstart = [0.08 1 2], b) – wstart = [0.12 1.5 3].  

    Graphs in Fig. 2 demonstrate that higher requirements to learning quality (smaller 
values of Pgoal) necessitate higher number of training epochs. Both families of the 
curves indicate that for each requirement for learning quality there exists an optimal 
level of parameter γs where training is fastest. Both larger initial weights and smaller 
Pgoal increase the difficulty of the task. We pay readers attention that in difficult tasks, 
optimal values of parameter γs are smaller. In easier tasks optimal level of parameter 
γs is higher. If the classes overlap notably (the classification task is more difficult), 
classification errors prevent excessive growth of the weights. The weights are smaller 
and the minima of the curves #epochs = f(γs) are less expressed. (Fig. 3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A number of training epochs required to achieve Pgoal as a function of dynamic change 
of stimulation, γs: 1 - Pgoal = 0.08; 2 - Pgoal = 0.16; two notably overlapping pattern classes: µ1 = 
[0.3 1.2]: a - wstart = [0.12 1.5 3], b – wstart =[0.08 1 2].  
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4   Survivability of Population of Intellectual Agents   

A natural question that arises while analyzing biological populations, social 
collectives and multi-agent systems in context of their evolution, is an influence of 
self-stimulation on survivability of the population. Consequently, we have to consider 
a situation where there are a large number of similar artificial agents that ought to 
learn new pattern classification tasks. We assume that the agent passes away if it fails 
to learn fast enough to satisfy the a priori fixed condition Pclassif < Pgoal after the tmax 
training epochs. We show that presence of synthetic emotions helps larger fractions 
of agents to survive, i.e. to learn to solve the task rapidly. As a first step in the 
population analysis we will investigate many populations of agents having different 
self-stimulation parameter, γs.  To have larger diversity of agents we assume that each 
population of agents is composed of rf sub-families, fr agents in each sub-family. 
Thus, in each population we have r = fr × rf  agents. All agents in one sub-family 
possess similar characteristics, however, the families are to some extent different.  
    In experiments reported below, fr =200; rf = 6, r = 1200, the starting stimulation, 
sstart = 0.002, ∆ = 1.01. We used two-dimensional Gaussian data with fixed mean 
vectors; µ1 =-µ2 = [0.6 2.4]

T
; correlation ρ=0.7. Initial weights, learning step η, 

variances, σ1, σ2, of the single data components, however, were random variables: 
wstart = τ × [0.08 1 2], τ = (0.999+0.3ζ), η = 0.5+0.05ζ, σ1, σ2 =1+0.1ζ, where all ζ 
were independent random variables composed of sum of two random variables, ζA 
and ζB, distributed uniformly in interval [-0.15 0.15]. Variable ζA was individual for 
each single agent, while variable ζB was common to rf agents in single sub-family.  

 In the Fig. 4a we have curves: a mean number of epochs required to achieve goal 
Pgoal during itmax = 200 epochs versus self-stimulation parameter, γs. Curves 1 and 2 
remind curves 1 and 3 in Fig. 2a obtained for one single agent. A main difference is a 
scale for the number of training epochs allowed to reach the goal. In Fig. 3, learning 
step was approximately four times smaller. Therefore, we needed approximately four 
times more epochs to achieve the goals.  

 

 
 

Fig. 4. a) Mean number of training epochs required to achieve Pgoal as a function of dynamic 
change of self-stimulation, γs: 1 - Pgoal = 0.004, 2 - Pgoal = 0.03 during 200 training epochs.      
b) An effect of emotions ES on populations survivability (a fraction of agents which achieved 
desired classification error level, Pgoal=0.004): 1 itmax = 200 epochs, 2 - itmax = 600 epochs. 



8 Š. Raudys 

 

    In Fig. 4b we have “survivability graphs”, a fraction of agents (in percents) that 
succeeded achieve the goal, Pgoal = 0.004 during itmax training epochs. The graphs in 
4b also demonstrate the Y-D Law and indicate an existence of optimal values of self-
stimulation parameter, γs.  
    The graphs in Fig. 4b show that survival ratio crucially depends on a number of 
epochs allowed to achieve the goal, Pgoal. If short training is available, in order to 
survive, optimal amount of emotions depends on Pgoal notably. The stricter are 
requirements for learning quality (lower goal value), the smaller amount of emotions 
ES is necessary. For easier training tasks (high goal value, small initial weights), 
higher level of emotions is allowed. 

5   Discussion and Suggestions for Future Research 

One may assume that in process of species evolution, nature selected only these 
populations of individuals which are controlling the stimulation. This “self-
stimulation phenomenon” we interpret as emotions in our study. To be more precise, 
it is only one aspect of emotions in this paper called “emotions ES” (emotions for 
stimulation). To imitate synthetic emotions we restricted ourselves with simplest 
model: the single layer perceptron trained by back propagation algorithm and feed-
back chain utilized to modify stimulation values in dependence on a success in 
training. The new modification of the perceptron training algorithm adapts its target 
values during iterative training process: if classification error decreases for some time, 
the stimulation level is increased, if training becomes unsuccessful, the stimulation is 
reduced. Simulation studies demonstrate that values of feedback control of the targets 
affect the speed and performance of training process. Training scenario with emotions 
supports faster training. The dependence of training speed on level of emotions can be 
described by the Yerkes–Dodson law and has inverted letter “U” shape.  
    In analysis of situation where there is a large number of artificial agents that ought 
to learn different, subsequently changing pattern classification tasks, it was found that 
if short training is allowed, presence of certain amount of emotions helps larger 
fractions of agents to survive. This peculiarity of adaptive agent could be used in 
multi agent systems research. 

Simulation analysis of the optimal level of self-stimulation on requirements to 
learning quality exhibit several features that match experimental findings in humans 
[1, 4, 5]. Often the people are changing their motivation in dependence on the 
success. Children are more emotional as the grown up persons. Populations which 
settle in warm, easy to live climate raise lower requirements to learning quality. So, 
they are more emotional than ones which live in severe northern climate. In this way, 
very simple model of dynamic target value control is one more possibility to elucidate 
theoretically these important observations. Possibly, our definition of synthetic 
emotions could indicate new ways to train robots, intellectual agents that have to 
adapt and to operate in unproblematic or more difficult environmental conditions. We 
have seen that dynamic change of learning step allows speed up training process 
notably. We investigated both, dynamic change of η and s. Dynamic target value 
control, however, is easier to interpret from a point of view of the emotions.  
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    Striking conclusion derived from above analysis is that such simple element as 
single layer perceptron equipped with dynamic change of the difference between 
desired outputs could be interpreted as synthetic emotions which help the agents 
overcome difficulties that arise during training process. In the output layer of 
multilayer perceptrons, we also have SLPs trained by the same type of learning 
algorithm. One may hope that conclusions obtained for SLP classifier most likely are 
valid for MLP based learning systems. In principle, significantly larger number of 
means can be utilized to control perceptron’s training process. These means include a 
noise injection to components of training vectors, a noise injection to desired targets, 
use of weight decay term for regularization, etc. [14, 15]. Obviously, these factors 
could be included into the emotions model to make it more suitable to analyze real 
world problems. Useful extension of the model is analysis of learning process utilized 
to solve not a single, but a variety of varying pattern recognition tasks, like it was 
done in a recent research papers on aging [25] and criminality [26]. In analysis of 
populations of intelligent agents, one can consider situations where successful 
members of the populations can produce offspring, a strategy widely widespread in 
Nature [26, 27]. Including of the factors just mentioned, organizing of the populations 
into sub-groups with mechanisms of self-support of the agents inside the sub-group 
and restricted beneficial cooperation between them, and incorporation of the 
mechanisms of synthetic emotions into learning rule is a topic for future research in 
order to crate more realistic multi agent systems capable to survive in permanently 
changing environments. 

The investigation performed shows that connectionist approach to examine 
synthetic emotions can be effective enough to explain numerous phenomena observed 
in real life. Modifications of single layer perceptron based training model could be 
useful both for cognitive psychologists, sociologists, economists as a mean to 
investigate learning processes and to computer scientists which develop the 
algorithms capable adapt rapidly in unknown and everlastingly changing 
environments.  
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